COMPARISON OF ENERGY STATUS IN PORTUGAL AND IN SLOVAKIA
UDC: 620.9(469:437.6)
Schlagwörter:
Energy, renewable energy sources, sustainable energy, energy sectorAbstract
Portugal and Slovakia, like other European countries, face the critical challenge of transforming their energy sectors to meet the EU’s goal of climate neutrality by 2050. Achieving this target requires a comprehensive strategy involving new policies, advanced technologies, and sufficient financial investment to drive emission reductions and support a shift to more sustainable energy systems. While the overarching goal is the same across Europe, each country’s approach is shaped by its specific conditions—such as geography, climate, natural resources, political priorities, and social factors. Therefore, national energy and climate strategies differ in scope and ambition. This paper focuses on the scale of transformation required in the energy sector, examining what Portugal and Slovakia must do to meet their 2050 climate targets. It analyzes their current energy systems, key challenges, and progress toward decarbonization. By comparing these two countries, the paper highlights how geographical and demographic differences influence their respective energy profiles. Portugal, with abundant renewable resources, and Slovakia, with a strong nuclear component, offer contrasting but instructive examples of the diverse paths European nations are taking toward a low-carbon future. The comparison helps illustrate the broader complexity of Europe's energy transition and the importance of tailored national strategies.
Downloads
Literaturhinweise
[1] Li, Y.; Liu, F.; Chen, K.; Liu, Y. Technical and economic analysis of a hybrid PV/wind energy system for hydrogen refueling stations. Energy 2024, 303, 131899, doi:10.1016/j.energy.2024.131899.
[2] Aktekin, M.; Genç, M.S.; Azgın, S.T.; Genç, G. Assessment of techno-economic analyzes of grid-connected nuclear and PV/wind/battery/hydrogen renewable hybrid system for sustainable and clean energy production in Mersin-Türkiye. Process Saf. Environ. Prot. 2024, 190, 340–353, doi:10.1016/j.psep.2024.07.032.
[3] Zheng, Y.; Tarczyński, W.; Jamróz, P.; Ali Raza, S.; Tiwari, S. Impacts of mineral resources, economic growth and energy consumption on environmental sustainability: Novel findings from global south region. Resour. Policy 2024, 92, doi:10.1016/j.resourpol.2024.105019.
[4] Pan, X.; Shao, T.; Zheng, X.; Zhang, Y.; Ma, X.; Zhang, Q. Energy and sustainable development nexus: A review. Energy Strateg. Rev. 2023, 47.
[5] David, T.M.; Buccieri, G.P.; Silva Rocha Rizol, P.M. Photovoltaic systems in residences: A concept of efficiency energy consumption and sustainability in brazilian culture. J. Clean. Prod. 2021, 298, doi:10.1016/j.jclepro.2021.126836.
[6] Silva, B.V.F.; Holm-Nielsen, J.B.; Sadrizadeh, S.; Teles, M.P.R.; Kiani-Moghaddam, M.; Arabkoohsar, A. Sustainable, green, or smart? Pathways for energy-efficient healthcare buildings. Sustain. Cities Soc. 2024, 100, 105013, doi:10.1016/j.scs.2023.105013.
[7] Li, X.; Gao, Y.; Hu, Y.; Lu, L.; Zhao, Z.; Ma, W.; Qiao, W.; Liu, X.; Wang, Z.L.; Wang, J. Efficient energy transport from triboelectric nanogenerators to lithium-ion batteries via releasing electrostatic energy instantaneously. Chem. Eng. J. 2024, 487, 150449, doi:10.1016/j.cej.2024.150449.
[8] Zhang, Q.; Du, D.; Xia, Q.; Ding, J. Revealing the energy pyramid: Global energy dependence network and national status based on industry chain. Appl. Energy 2024, 367, 123330, doi:10.1016/j.apenergy.2024.123330.
[9] Ge, J.; Wang, Y.; Zhou, D.; Gu, Z.; Meng, X. Effects of urban vegetation on microclimate and building energy demand in winter: An evaluation using coupled simulations. Sustain. Cities Soc. 2024, 102, 105199, doi:10.1016/j.scs.2024.105199.
[10] Guo, S.; Huang, Y.; Wang, Y.; Wang, Z.; Zhang, Y.; Wang, Z.; Rong, J. Analysis of parameters for spray-local exhaust ventilation (SLEV) to minimize high-temperature smoke pollutants and reduce energy consumption. Sustain. Cities Soc. 2024, 107, 105464, doi:10.1016/j.scs.2024.105464.
[11] Alghamdi, F.M.; Kamel, A.R.; Sidahmed, M.; Bahloul, M.; Alsolmi, M.M.; Abonazel, M.R. Journal of Radiation Research and Applied Sciences A statistical study for the impact of REMS and nuclear energy on carbon dioxide emissions reductions in G20 countries. J. Radiat. Res. Appl. Sci. 2024, 17, 100993,
doi:10.1016/j.jrras.2024.100993.
[12] Osei Opoku, E.E.; Acheampong, A.O.; Dogah, K.E.; Koomson, I. Energy innovation investment and renewable energy in OECD countries. Energy Strateg. Rev. 2024, 54, 101462, doi:10.1016/j.esr.2024.101462.
[13] Eurostat Database, https://ec.europa.eu/eurostat [accessed 22 Aug. 2024].
[14] IEA, https://www.iea.org/ [accessed 26 Aug. 2024].
[15] Portuguese Government Roadmap for Carbon Neutrality 2050 (RNC2050); 2019.