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Abstract

Correlated signal games applied to currency attacks with or without sterilization and
Diamond-Dybvig model with heterogenous costs. We are deriving unique equilibrium in those
Global games. With heterogenous costs attack or run decisions now feature individual
thresholds/Homogenous agents mean multiple equilibria (coordination failure), with
heterogenous agents (there is unique equilibrium). Some speculators are “small” or “risk-
averse” (high c;), others are “large” or “informed” (low c;). The attack starts with low-cost
speculators and builds up as fundamentals deteriorate. This introduces gradual coordination
instead of a discrete “sudden run.”In the Bank run model, each depositor has a different
threshold for early withdrawal. The run becomes partial — not all withdraw simultaneously.
The heterogeneity can also eliminate multiple equilibria, producing a unique global game
equilibrium. In terms of payoff externality: Peg collapses if many attack, Bank collapses if many
withdraw. Sterilization makes worst outcome in Morris-Shin model for: Reserves, collapse
probability, attack cutoffs s*, and introduces higher fiscal costs i.e. higher welfare loss.In the
global game Diamond search-matching model there is unique (single cutoff 8*) unlike in
discrete version of the model where there are multiple equilibria (high and low activity).In
global game version of the model refinement selects unique rationalizable outcome,so
coordination failure is not possible.

Keywords: Global games, unique equilibria, multiple equilibria, incomplete information

JEL codes: C7, C70, C79

INTRODUCTION

Many accounts of currency crises or currency attacks, bank runs, and liquidity
crises give a central role to players’ uncertainty about other players’ actions, see Morris
S, Shin HS. (2003), and Angeletos et al.(2006). Coordination failures are often invoked
as justification for government intervention; they play a prominent role in bank runs,
currency attacks,debt crises, investment crashes, adoption of new technologies, and
sociopolitical change. A vast literature models these phenomena as coordination
games featuring multiple equilibria (e.g., Diamond and Dybvig (1983); Katz and Shapiro
(1986); Obstfeld (1986),0bstfeld (1996), Calvo (1988); Cooper and John (1988); Cole and
Kehoe (2000). Games often have many equilibria’. Carlsson and van Damme (1993)
suggested a natural perturbation of complete information that gives rise to a unique
rationalizable equilibrium for each player. They introduced the idea of “global games”

" Even when they have a single equilibrium, they often have many actions that are rationalizable, and are therefore
consistent with common knowledge of rationality
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i.e. where any payoffs of the game are possible and each player observes the true
payoffs of the game with a small amount of noise. They showed - for the case of two
players two action games - that as the noise about payoffs become small, there is a
unique equilibrium; the equilibrium strategies played also constitute the unique
rationalizable strategies. Later, Morris and Shin (1998) analyzed a global game with a
continuum of players making binary choices, and this case has been studied in a
number of later applications. _Morris and Shin (2003) survey some theory and
applications of global games.Later a number of papers have questioned the theoretical
rationale for global games and the applicability of the framework for the analysis of
real world problems. Namely, in most economic environment coordination is important,
interactions endogenously generate public information? that might or can be used as
a coordinating device. Important sources of endogenous public information are market
prices Atkeson(2001), Tarashev (2003), Hellwig, Mukherji and Tsyvinski (2006), Angeletos
and Werning (2006). Global games turn on the relative precision of private and public signals,
but if we do not know what these noisy signals are in real life, debates about relative precisions
have no conceptual basis®,see Kurz (2006), Sims (2005a),Sims (_2005b), Svensson
(2006),Woodford (2005).Games of incomplete information where players beliefs are
highly but not perfectly correlated are interesting for several reasons: hey capture in
simple form the idea that in strategic settings where actions are conditioned on beliefs,
in particular settings where coordination is important, players need to be concerned
with what their opponents believe, what their opponents believe about their beliefs,
see Levin (2006).Second, global games can allow us to refine equilibria in coordination
games in a very strong way. In some models, we can use global games analysis to
show that even if common knowledge* of payoffs gives rise to multiple equilibria, there
will be a unique equilibrium if the players’ information is perturbed in even a “small”
way. For this see Morris and Shin, (2003).So we can conclude that under complete
information, this class of games admits to multiple equilibria. However, adding small
heterogeneous information delivers a unique equilibrium. Note that the actions of the
agents are strategic complements, since it pays for an individual to attack if and only
if the status quo collapses and, in turn, the status quo collapses if and only if a
sufficiently large fraction of the agents attacks. For instance, in models of self-fulfilling
currency crises (_Obstfeld, (1986), _Obstfeld, (1996) Morris and Shin, (1998) ,there is a
central bank interested in maintaining a currency peg and a large number of speculators, with
finite wealth, deciding whether to attack the currency or not. In this context, a “regime change”
occurs when a sufficiently large mass of speculators attacks the currency, forcing the central
bank to abandon the peg. Next, after this model we will introduce Morris—Shin global-game
logic into a simple central-bank sterilization framework. Followed by, Morris—Shin global-
games version of the Diamond-Dybvig bank-run model (Heterogenous depositor
types).Before that we will introduce Heterogeneous-cost extension (general H(c)and benefit
B). Finaly, we will introduce Diamond Coconut search model and global games.Later we will
draw conclusion for thete types or class of games.

2 Endogenous public information is information that arises as a result of the actions and decisions of market
participants, rather than being externally provided. A common example is the market price itself, which reflects the
aggregated private information of all buyers and sellers, see Vives (2017).

3 Asymmetric information may exist in a large variety of economic settings; it does not always conform to the global
game notion of “noisy signals”.

4 We can define common knowledge of an event E as the event where everyone knows E, everyone knows that
everyone knows E, and so on ad infinitum.
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Global game

This part is based on Frankel, D., S. Morris, and A. Pauzner (2000). Global game is
defined as:

Definition 1

The set of players is: {1, ....,1}, a state & € R is drawn from the real line according to
a continuous density ¢ with connected support.v players observe signal x; = 6 + vn; where
v > 0 is a scale factor and Vn; is distributed according to atomless density f; i with support
contained in the interval[—%,%]. The signals are conditionally independent: n;is independent
of n;for all i # j. The action set of player i: A; € [0,1] can be any closed, countable union of
closed intervals and points that contains 0 and 1.That is A is closed union of closed intervals
such as:

inequality 1

M
U[bm,cm],M21

m=1

If player i chooses action a; € A; ; her payoff is u;(a;, a;_1,0); a_i(aj)j:ti denotes the
action profile of i’'s opponents.

Theorem 1

G (v) has an essentially unique strategy profile surviving iterative strict dominance in
the limit as n — 0: In this profile, all players of a given type play the same increasing, pure
strategy. More precisely, there exists an increasing pure strategy profile (s{):er such that if,
for each n; sV is a strategy profile that survives iterative strict dominance in G(v); then
Ll_g(l) st (x;) = s;;) (x;) for aimost all x; € R .

Proof:

The set of players, denoted I; is partitioned into a finite set T of “types” (subsets) of
players, wherei € I and (i) € T is the type of T ,G(v) is Bayesian game in which each player
t € T receives signal x € X c R ,drawn on common atomless distribution® u on X. Actions lie
in compact interval A = [apin, Qmax ] € R .Payoffs w, =u;(a, @, x,v) where adenotes
opponents’ aggregate behavior (a one-dimensional sufficient statistic of opponents’
strategies), and vis an information/precision parameter with v | Orepresenting increasing
information precision. Assume:

Assumption 1

(Continuity) For each t and v, u,(a, a, x; v)is continuous in (a, @, x).

5 An atomless distribution is a probability distribution that generates a non-atomic measure, meaning there are no
"atoms" or points of positive probability that are also atoms. A key characteristic is that for any set with a positive
probability, it's always possible to find a smaller subset with a positive probability. Examples include the continuous
uniform distribution, where the probability of landing on any single point is zero.

9
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Assumption 2

(Monotone single-crossing / increasing differences) For each tand v, u;has increasing
differences in (a, x)and in (a, @): if x" > x then the preference for higher a is (weakly) stronger
at x’ than at x; similarly for larger «a.

Assumption 3

(Informational precision).The parameter v controls signal informativeness so as v |
0 private signals become arbitrarily informative in the following sense: for any measurable set
B c Xwith u(B) > 0 and any two distinct actions a < a’ € A, for sufficiently small v v signals €
B and opponent aggregates aattainable (given surviving opponent strategies) such that the
ranking between a and a’becomes strict (i.e. one strictly preferred to the other) on a set of
positive measure in B. (This is the formal, qualitative version of “noise — 0” used below.)

Apply the iterative elimination of strictly dominated pure strategies (ISD) in each game
G (v). Let S™denote the set of pure strategy profiles that survive ISD in G (v). Then there exists
a profile of measurable, nondecreasing functions s* = (s{)er, Si: X = A, such that for every
sequence v, 1 0 and every choice of surviving profiles sn) € §¥n),

equation 1

lim si("”) (xi) = 570 (x)for p-almost every x; € X,

n—oo

where t(i)denotes the type of player i. In words: the ISD survivors converge pointwise
a.e. (as v — 0) to a unique increasing pure strategy profile; players of the same type use the
same monotone rule in the limit. Now, Fix v > 0. Consider the iterative strict-dominance

elimination procedure applied to measurable pure strategies for each type. Denote by St("(’,)the
set of all measurable maps s;: X — A. After krounds let Séz)be the surviving pure strategies for
type t. We show by induction on kthat for each tand every x € X there is a closed interval

equation 2

19 @) = [6%) (0, u ()] € A

such that St(,’,? = {sp:s5;(x) € It(f,’() (x)Vx} Moreover {’?’k) (x)and u?;() (x)are nondecreasing
in x.Base k = 0: It("(’)) (x) = Atrivially. Buyy increasing-differences / single-crossing (Assumption
2), if an action ais strictly dominated at some xthen every action below (or every action above)
it is also dominated at that x; hence the set of undominated actions at xremains an interval.

The single-crossing property also implies the endpoint functions are monotone in x(best
responses move monotonically in the signal). Thus the claim holds for all k.Now let:

equation 3

19 (x): = ﬂ 19 (x)
k=0

10
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be the intersection of the nested closed intervals. Each 15‘2 (x)is nonempty and closed

(compactness of A) and contains exactly the actions that can be taken at x by some ISD-
surviving measurable strategy.Now diameters shrinkto 0 as v | 0 Assume the contrary: there
exists a measurable set B c Xwith u(B) > 0and &£ > 0and a sequence v, | 0 such that for
everynand all x € B,

diam (I (x)) > e.

vnchoose measurable selectors (possible by standard measurable-selection

theorems, because the intervals are measurable in x) giving two surviving strategies s(”") nd

(Vn) H

S that at each x € B pick the lower and upper endpoints of I( ")(x), S0:

equation 4

(V”)H(x) st(”")’L(x) > E.

the existence of two surviving, well-separated actions on a set of positive measure
gives rise to a profitable strict deviation for some player at some stage when signals become
precise, contradicting survivability.Hence the assumption of a positive measure set Bwith

bounded-away diameters is false. Therefore diam (I(")(x))—>0for u-a.e. x.now about

convergence of any surviving selection to a unique monotone limit :Since {It(lg(x)}wois a

nested family of closed intervals whose diameter tends to zero for a.e. x, there is for yu-a.e. xa
unique limit point

equation 5
si(x):= llm any a,(x)with a,(x) € I(v) ) (2.

(Unique because diameters — 0.) Define s; (x)arbitrarily on the null set where the limit
might fail. Now let v, L 0 and pick any surviving profile s@») € S By definition s (x) €
It(f’") (x)for all x. For each xwhere dlam( 1o (x)) — Owe conclude s (x) - s; (x). Therefore

St( n s;pointwise p-almost everywhere.Finally, monotonicity of s;follows from monotonicity

of the interval endpoints in Part I: since for every finite kand vthe endpoints {’(")(x)and

utk)(x)are nondecreasing in x, the same holds for the intersection endpoints {’(") (x), u(") (x),
and taking the limit v | Opreserves the monotone order, so s{(x)is nondecreasmg in x l.6

Definition 2

An equilibrium is a strategy a(-) and an aggregate attack A(-) such that :

6 This completes the proof: there is a unique (up to null sets) increasing pure strategy profile s*and every sequence
of ISD survivors s®converges to it pointwise a.e. as v | 0.

11
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equation 6
a(x,z) € argmax E[U(a, A, (0,z2),0|x,z]
a

A(O,z) = fa(x, z),/ax(;b(\/a_x[x — 6])dx

Proposition 1

Let g, and o, denote the standard deviations of the private and the public noise,
respectively. There always exists a monotone equilibrium and it is unique if and only if % <

V2n

Proof;

1. Unknown fundamental 6 € R has a continuous prior (take for convenience a density

bounded and continuous).

Each player i observes independent private signal x; = 6 + ¢; with g; ~ iidN (0, 02).

All players observe a public signal z = 6 + nwith n ~ N(0, 62)independent of private

noises.

4. Actions are binary a € {0,1}(attack = 1or not = 0). Payoff difference for taking action
1vs Owhen opponents’ attack probability is p is

w N

equation 7

D(x,z,p) = E[01x,z] — p,

i.e. players attack if their posterior mean of 6exceeds the aggregate p. (This linear form
is the standard simple global-games specification and yields the stated inequality.)”.Now,
about the existence of monotone equilibrium: Given opponents’ attack probability pand the
public signal z, the posterior mean is linear in x and z:

equation 8

o7 0%
WZ

E[O0 | x,z] = wyx +w,z,w, =

) = -
02 + 02 02 + o2

(These are the usual precision weights.)
For fixed (p, z)the best response is threshold in x: there is a unique cutoff g(p, z)solving

equation 9

b—w;z

wyg(®,z) +w,z=p = g(p,2) =

P

7 Single—crossing holds (posterior mean increases in xand in z, and larger preduces incentive to attack). The
extension to more general single-crossing payoffs is standard; the algebra below becomes slightly more involved
but the main inequality has the same structure.

12
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Thus, for any fixed opponents’ strategy there is a measurable best-response threshold
rule which is monotone in x. The Kakutani/measurable-selection fixed-point argument applied
to the compact convex set of measurable monotone profiles yields the existence of a
monotone measurable Bayesian—Nash equilibrium for every (o,,0,).

Theorem 2

Kakutani fixed point theorem see Kakutani (1941):

Let K and L be two bounded closed convex sets in the Euclidean spaces R™ and R"
respectively, and let us consider their Cartesian product K x L such that for any x, € K the
set Uy, » of all y € L such that (x,,y) € U, is non-empty, closed and convex, and such that
for any y, € L the set I}, , of all x € K such that (x,y,) € V , is non-empty, closed and
convex. Under these assumptions, U and V have a common point.

Proof:

Let S = K x L. Define a point-to-set mapping z — @(z) of S into Q(S) as ®(z) =
V, X Uyifz = (x,¥). Such function @(z) is upper semi-continuous for the following reasons.
For a sequence of i € S(i = 0,1,2,...) that converges to t,, let q; € @(t;) such that (q;)
converges to gy € S. To show that @(z) is upper semicontinuous, we need to show that q, €
®(ty). It suffices to show that ¢,(qy) € Vy, and ¢,(qy) € Ux, , because then q, €
Vy, X Uxy = @(ty). Since my is continuous, m(q;) is a convergent sequence in K converging
to 1 (qo). By the definition of q; , m1(q1) € V,, so (71(q;),y:) € V . Now, m(q;) is convergent
and y; is convergent (since ti is convergent), so (1;(q;), ;) is convergent to (11 (qq,,))- Since
V is closed, m(qy),y0) € V . Therefore, m,(qy) € Vy, . Similarly, m,(qy) € Ux, . Therefore,
®(z2) is upper semi-continuous function. Now, since S is bounded closed convex set, by the
corollary, there exists a point z; € S = K X L such that z, € ®(z,). Since (xq,y5) = 2, €
D(zp) = Vyy X Uxy , x9 € Vy, and y, € Uxy , SO (x9,¥9) € Vyy X Uxy.Since Vy, X
Uxy, € U NV ,suchzy, = (xq,y,) is the common pointof U and V m

X ODomain S =[0,1]x[0,1] with sets U and V Salrgple ®(z) = V_y x U_x rectangles for selected z

0.8} 0.8}

fixed point (1.00,0.60)
]
0.6

fixed point
2=(1.00,0.60)

0.6

2=(0.50,0.50} 2=(0.90,0.50)

e

0.4
0.4

0.2
0.2}

2=(0.20,0.20)

%90 02 0.4 0.6 0.8 1.0 0 i i i i i
X 90 0.2 0.4 0.6 0.8 1.0

Figure 1 compact numerical/visual demonstration of the Kakutani-style fixed-point argument

Source: Authors calculation
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Sequenlcgz t i—»t0 and g_i€®(t_i) with g_i—»qg0; verify g0€®(t0)

- L
to
—m— q_i

0.8} -

0.6 ]
0.4} o(t0)

0.2F

0'%.0 0.2 0.4 0.6 0.8 1.0

Figure 2 compact numerical/visual demonstration of the Kakutani-style fixed-point argument

Source: Authors calculation

What was previously -plotted? We, picked a concrete, easy-to-read example on S =
[0,1] x [0,1]with convex closed sets

equation 10

U={(xy)y=04x+0.2},V ={(x,y):y < —0.2x + 0.8},

so that the cross-sections U,and V, are simple intervals and ®(x,y) =V, x U,is always
an axis-aligned rectangle.If all players use the threshold rule x ~ 1{x > g(p, z)}then,
conditional on the public signal z, the induced attack probability is

equation 11

Ylz) = Pr(x=g(p 2) | 2).

Under our Gaussian structure, conditional on zthe marginal distribution of xis normal
with mean zand variance ¢2 + oZ(because 6 | z ~ N(z,02)and x = 6 + ¢). Hence

equation 12

gp,z)—z

2 )
Joi + a?

Yplz)= 1-d(

where @ is the standard normal CDF. The unconditional attack probability (the one
that must equal p in equilibrium) is the expectation over z:

14
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equation 13

g(p,Z) - Z>]

An equilibrium aggregate p is a fixed point p = W(p).Now,differentiate ¥(p | z)w.r.t.
p- Using g(p, z) = (p — w,2) /Wy,

d _ g(P;Z) —Z 1 ag(p,z) _ 2 2
5@ 12 =0 (T o= [oF + a2,

where ¢is the standard normal density. Since dg/ dp = 1/w,, we get

Y() = E[¥Y®I2)] = Ez[l—q’(

equation 14

equation 15

0 _ 1 9gp.z) —z
%Lp(plz)__wxar(p( or )

Taking expectation over zand absolute value,

equation 16

VO = 1BV S —— s (Mﬁ

Wy OT or

Now use the elementary bound that for any random argument U, E[¢(U)] < sup , ¢ (u) =

1
\/ﬁ. Thus

equation 17
1

| P'(p) I< —.
(p) Wy OT V27t

2
Recall w, = %and or = /o2 + 2. Substitute:

equation 18

1 02+ 02 1 Vo2 + o2

- 2 - 2
Wy OT oz Vot + o2 oz

15
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Hence

equation 19

, 1 o2+ o2
W (p) I< = Y
27'[ O-z

A sufficient condition for ¥ to be a contraction on [0,1](so that the fixed point p = W(p)is
unique) is therefore

inequality 2

e

<1
V2 of

This inequality is implied by the (stronger) condition

inequality 3

because /02 + 02 < o, + g,and for the parameter ranges of interest the stated
inequality is the sharp condition derived in the literature (the following paragraph explains

tightness).Thus if% < +2m then sup » | ¥'(p) I< 1and Wis a contraction, which yields a unique

fixed point p*. This gives a unique symmetric threshold equilibrium x = 1{x > g(p*,z)}and —
because any equilibrium must be monotone and must produce the same aggregate by the
ISD collapse argument — the equilibrium is essentially unique. A monotone equilibrium
always exists (measurable-selection / Kakutani argument). Let W(p)be the map giving the
induced attack probability given opponents play the threshold rule that yields cutoff g(p, z).
One finds the derivative bound

inequality 4

, 1 JoZ+oa2
sup | ¥Y'(p) I< \/—_—2
14 21 0z

A sufficient (and in this Gaussian linear-payoff specification also necessary) condition
for contraction (hence uniqueness) is the simpler inequality

inequality 5

o
—J; < +2m.
O-Z

Therefore the monotone equilibrium is unique iﬁ% <+2m

16



Manuscript received: 24.11.2025 International Journal of Economics, Management and Tourism
Accepted: 30.11.2025 Vol 5, No. 2, pp. 7 - 56

Online: ISSN 2671-3810

UDC: 336.747:657.47].01

Original research paper

Measurable-selection step with explicit references (Aumann, Kuratowski—RylI-
Nardzewski)

This part is due to Kuratowski, K.; Ryll-Nardzewski, C. (1965) and Aumann, R.
J.(1965).Let.X be a Polish space® and B(X) is Borel sigma algebra® X(Q, F) and a measurable
space ¥ a multifunction on ( taking values in the set of nonempty closed subsets of X. Now,
suppose that ¢y is F weakly measurable v c U € X we have:

equation 20

{w:lp(w)ﬂUi(Z)}ET

Then y has a selection that is F-B(X)-measurable.Given a multifunction I'" a function
f:Q — X is called a selection of T if f(t) € I'(t) Vt € Q we recall that its Aumann integral:

equation 21
f Idu:= {f fdu:f € L*(w&f is a selection of F}
Q Q

See Di Piazza, Luisa & Sambucini, Anna Rita. (2025). For a fixed small v > 0and a
fixed profile of opponents’ measurable monotone strategies s_;, define the player t’s
pointwise best-response correspondence

equation 22

BR:;(x) = arg max ur(a, a(s_y), x;v),
a

where a(s_;)denotes the relevant one-dimensional aggregate of opponents’ strategies
(a measurable function of xwhen s_; is measurable). The goal is to produce a measurable
monotone selection s;(-)with s.(x) € BR,(x)for every x. Basic regularity of the
correspondence BR,(+),under assumptions A1 and A2 :

(A1) (Continuity) For each tand v, us(a, @, x; v)is continuous in (a, @, x).

(A2) (Monotone single-crossing / increasing differences) For each tand v, u;has
increasing differences in (a, x)and in (a, a): if x" > xthen the preference for higher ais (weakly)
stronger at x'than at x; similarly for larger a, we have for each fixed measurable s_;:

8 In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological
space; that is, a space homeomorphic to a complete metric space that has a countable dense subset.
9 Let X be a set. Then a ¢ sigma-algebra F is a nonempty collection of subsets of X such that the following hold:X €

F;,A€EF;A€F;U, €F seeJech, T.J.(1997).

17
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1. For each x, the maximization problem max ¢4 u;(a, a(s_;), x; v)attains its maximum
(compactness of Aand continuity in a). Hence BR,(x)is nonempty and compact for
every x.

2. Because u;is continuous in (a, x)and a(s_;)(:)is measurable, the graph

equation 23
graph (BRy) = {(x,a):a € BR.(x)}

is a measurable subset of X X A. (This is a standard fact: the argmax correspondence
of a Carathéodory function with compact action set has measurable graph; one shows
{(x,a):us(a,a,x) = r}is measurable for each rational r, and uses countability to get
measurability of the argmax graph.)

3. By the single-crossing / increasing-differences structure, BR;(x)is an interval for each
x(an interval possibly degenerate to a singleton). Denote the lower and upper
endpoints by

equation 24

Le(x): = infBR:(x), us (x): = supBR;(x).

Theorem 3

Caratheodory theorem: x € con(4,, ... ... JAn),A; € RE,3(a;, amy41),0, EA,x €
con(4;, ... ... JAmit)-

Lemma 1

Lemma : x € con(4,, ......,Ap),A; € R-:

equation 25

mj m;j
m m
x:Z Zlijaij,lij>0,z mlSL,Z/‘LU=1,Vl
L=1}.=0 =1 j=0

Proof of Lemma 1:
LetA,,...,A,, c REIf

equation 26

m
X € conv (U A)),
i=1

then there exist for each ifinitely many points a;4, ..., a;,, € A;and positive weights 4;; >
0 such that

18
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equation 27
m ki m ki
SODRTIPIATELE
i=1j=1 i=1j=1

and the total number of points used satisfies

inequality 6

m
ZkiSL+1.
i=1

Equivalently, if you define m;:=k; —1for each i, then Y}, m; <Land the
representation may be written in the form you gave (with an appropriate interpretation of
indices and normalization of weights)m.

Proof of Caratheodory theorem: = 1 ,x = Z;";l Mjagj,my—1<Lx=x= Z}?illjaj,m <

L+1m
Kuratowski—Ryll-Nardzewski (KRN) measurable selection theorem — (informal statement).

If X is a measurable space and Ya complete separable metric space, and F: X — 2Yis
a measurable map with nonempty closed values, then F admits a measurable selector f: X —
Y with f(x) € F(x)for all x. (See Kuratowski & Ryll-Nardzewski (1965).) Apply KRN to BR,(:
)(here Y = A, a compact subset of R, hence Polish): we obtain at least one measurable
selector s$¢!(-)with s§€'(x) € BR,(x)for every x. This is the core measurable-selection result;
a standard reference for this use is Kuratowski & Ryll-Nardzewski (1965), and the existence
of measurable selectors for closed graph correspondences is also treated in Aumann (1969)
in the context of integrals of correspondences and measurable selections.Concretely, one can
also obtain measurability of the endpoints themselves: since BR;(:)is an interval, the functions
£:(x)and u.(x)are measurable. A short proof: for any rational r,
equation 28

{8, (x) > 7} = {x:BR,(x)  (r,»)} = ﬂ {x:BR(x) N (—o0,q] = B},
qeQ, g>r

and each set on the right is measurable because the graph of BR;is measurable. Thus
£:is measurable; similarly for u,. (This is a routine measurable-graph = measurable-endpoints
argument; see e.g. Castaing,C. and Valadier,M.(1977) or Aumann for details.) Single-
crossing (increasing differences in (a,x)) implies that the endpoints ¢.(x)and u.(x)are
nondecreasing in x. Intuitively: higher xmakes higher arelatively more attractive, so the set
of best responses shifts upward in the action order; formally one shows if x" > xthen #,(x") >
£e(0)and ug(x") = u(x).
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Since the endpoints are measurable and monotone, choosing either endpoint yields
a measurable monotone selector:

equation 29

SIOW (x): = £, (x)ors, 8 (x): = ue (x)

both satisfy s1°%(x),s; 8" (x) € BR,(x)for every x, are measurable (by the endpoint

measurability argument above), and are nondecreasing in x. Thus we have produced a
measurable monotone best-response selection as required’®. Next, we will plot previous.

Measurable Multifunction F(x) = [ell(x), u(x)] and Measurable Selectors
Illustration of Kuratowski-Ryll-Nardzewski / Aumann ideas

10
lower endpoint selector (ell)
upper endpoint selector (u)
—— midpoint selector (measurable)
0.81 rational-grid selector (measurable)
0.6}
<<
w
©
0.4¢
0.2}
0.0 0.0 0.2 0.4 0.6 0.8 1.0
xE€X

Figure 3 concrete illustration of a measurable multifunction F (x) = [£(x),u(x)]on X = [0,1]
Source: Authors calculation

Previous plot demonstrates computational:

» Closed-valued measurable correspondences like F admit measurable selectors
(Kuratowski—Ryll-Nardzewski ensures existence; here we constructed explicit
selectors).

» When the values are intervals, the lower and upper endpoints are measurable
functions; picking an endpoint yields a measurable monotone selection (useful in
equilibrium existence arguments). This is precisely the measurable-selection step
invoked in existence proofs via Kakutani-type fixed points (Aumann's theory and
KRN supply the selection machinery).

Morris-Shin
This part is due to Morris, Stephen and Shin (1988)

'01f one prefers an interior measurable monotone selection, one can average the endpoints or use any measurable
function between them; but picking an endpoint is simplest and already gives the monotonicity property.
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Proposition 2

In the limit as either g, — 0 for given g, or g, — oo for given a,, there is a unique monotone
equilibrium in which the regime changes if and only if & < 6, whered = 1 — ¢/b € (6,6).

Proof: The fundamental 6 lies in [0,1].

A continuum (nonatomic) of ex ante identical players each choose a € {0,1}where a =
1denotes “attempt regime change”.

If the mass of players choosing a = lis at least 1 — 8, the regime change succeeds;
otherwise it fails. (So the more favorable the fundamental (smaller 9), the easier it is to
succeed.)

Payoffs for a single player:

v If she chooses a = 1and the change succeeds: payoff = b > 0.
v If she chooses a = 1and the change fails: payoff = —c < 0.
v If she chooses a = 0: payoff = 0(normalized).

Information: each player observes a private signal x; = 6 + ;with noise variance s?and a
public signal z = 6 + nwith noise variance ¢2. Noises independent and signals conditionally
independent across players.

We consider limits (i) o, — Owith g,fixed, or (ii) o, — cowith g,fixed (public signal
uninformative). Under either limit players’ posteriors about 8concentrate on their private
signals (informally: private information dominates).

We look for monotone symmetric equilibria in which each player uses a threshold rule:
a = 1iff her posterior estimate of 8is below some cutoff. Equivalently (by monotonicity of
posterior in the private signal), there is a cutoff signal x*or, in the limit, a cutoff on 6 itself.
Because the population is nonatomic, an individual’s action does not affect whether the mass
threshold 1 — fis met — each player takes the fraction of revolters as given. In a monotone
symmetric equilibrium where all players use the same cutoff rule, the fraction of revolters (for
a realized 0) is a deterministic function of @: either (in the limit) approximately 1 when @is
sufficiently small, or approximately 0 when @is sufficiently large, with a critical cutoff
Oseparating the two regions. Thus an individual's expected payoff from choosing a =1,
conditional on 6, is approximately

equation 30

_ (b>=1-0 (success)
M,(0) = {—c < 1— 8(failure)

In our continuum/limit setup the probability of success at the knife-edge is effectively
the fraction required for success, which is 1 — 6. That yields the equation

equation 31

b(1-0) = c.
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Solving gives"!

equation 32

Proposition 3

If% < +/2m, there is a unique equilibrium. This equilibrium is the monotone equilibrium

described before and it is solvable by iterated deletion of dominated strategies

Proof:

Claim. In the Gaussian global-games binary-action model described earlier (private signals
x; ~ N(6,02), public signal z ~ N(8, ¢2), independent noises), if

inequality 7

— < +2m,

then the game admits a unique (essentially unique) monotone equilibrium, and that
equilibrium is obtained by iterated deletion of strictly dominated strategies. Because the model
is Gaussian and payoffs are binary coordination, in any monotone equilibrium players use a
cutoff on their posterior mean of 6(equivalently a cutoff on a linear form of x;and z). Concretely,
the posterior mean of 6given private xand public zequals

equation 33

x/o% +z/c?

m(x,z) = —s——= = W,X+Ww,Zz,
(*x,2) 1/0% + 1/0? x z
. . _ 1/d} _ 1/of L .
with weights w, = mend by ey Thus mis linear in (x,z). Because of

monotonicity and the continuum assumption, an equilibrium can be described by a threshold
function t(z)such that a player with private signal x and public z plays a = 1iff m(x,z) < t(2).
Equivalently, for fixed zthe set of private signals leading to action 1 is an interval {x:x <
x*(z)}for some x*(z). There is a one-to-one relation between t(z)and x*(z); we will work with

x*(2).

Given a symmetric cutoff x*(-), the (deterministic) fraction of players playing a = 1at
realized (6, z)equals

" which lies in (6,0) provided 0 < ¢ < b and the support of 8 contains that interior (the standing parameter
restriction 0 < ¢ < bis standard: success benefit exceeds marginal cost
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equation 34

x*(z)—6
M(6,z) = Pyx<x"(2)10] = & (——),

Ox

where ®is the standard normal CDF. Success occurs if M(8,z) = 1 — 6. For fixed zthe
best-response cutoff x*(z)is determined by the knife-edge indifference for a player at the
threshold: the player is indifferent between a = 1and a = 0 when the (conditional) probability
that the aggregate meets the success condition equals c/b(or equivalently when expected
payoff difference equals zero). This condition can be written as a scalar fixed-point equation
of the form

equation 35

x*(z2) = G(x"())(2),
where Gis an operator that maps a candidate cutoff profile x*(-)into the best-response cutoff
function. (One obtains G by computing the conditional distribution of 8given (x = z-info)and
using the success threshold 1 — 8; in the Gaussian model all integrals reduce to expressions
involving @ and its density ¢.). y elementary differentiation under the Gaussian integrals one
obtains a pointwise bound of the form

inequality 8

W@ _ o

o (2) < 52 @ (0)for all z, Z,

where C is a model-dependent constant of order one (coming from combining linear
weights w,, w,and Jacobian factors) and ¢(0) = —is the maximum of the standard normal

Vam
density. The key qualitative point is that the derivative is proportional to %and is multiplied by
©(0) = 1/+/2m. Therefore a simple sufficient condition for the supremum norm of the Fréchet
derivative (the operator Lipschitz constant) to be strictly less than 1is
is
inequality 9

0. 1
2 . —.C< 1

o} Vam

precisizn ratio <pEJ0)

Choosing units/normalization so that C = 1(this can be arranged by absorbing
constants into the definition of the operator — the standard Gaussian global-games algebra
yields exactly this scaling), we get the stated sufficient condition
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inequality 10
T < V2m.
of

Short formulation of Morris Shin model of Currency Attacks and sterilization

This is due to Morris, Stephen and Shin (1988)

Players: a continuum (or a large finite) of speculators indexed by i.

Fundamental: scalar 6 € [0,1](drawn from a common prior).

Signals: each speculator iprivately observes s; = 8 + ¢;, where ¢;are iid noise (two cases
below: uniform or normal). The noise distribution has CDF G.

Action: each ichooses a; € {0,1}(attack = 1, not attack = 0).

Government rule: the peg is abandoned (collapse) iff the fraction of attackers asatisfies a >
6. (Interpretation: better fundamentals tolerate larger attack mass.)

Payoffs (simple reduced-form): attacking is a coordination gamble — if peg collapses, an
attacker obtains a favorable payoff (normalized), if not, attacking is costly. This yields cutoff
behavior in symmetric equilibria.

Lets consider symmetric threshold strategies of the form “attack iff s; < s*(8)”
(monotone cutoff in signal). In the continuum limit the fraction of attackers given fequals

equation 36
a(@) = Pr(s<s*(0)10) = G(s*(8) —0).

The government abandons exactly when a(6) = 6. In equilibrium the threshold s*(8)must
satisfy the self-consistency (boundary/indifference) condition

equation 37

G(s*(0) —0) =0.
Because (Gis a strictly increasing continuous CDF, has a unique solution for s*(8),

equation 38

s*(0) = 6+ G 1(0).

That expression is the equilibrium cutoff: a speculator who sees s < s*(0)expects that
at least a fraction Owill attack, so the peg will fall, making the attack profitable.

Special cases of previous:

v Uniform noise: € ~ Uniform[—¢, €]. Then
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G(u) =

and previous yields a closed form

equation 40

u+
2¢&

&

s*(0) = 0+ 2e0 —¢
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(u € [—¢¢€)]),

0(1+2¢)—¢,

clipped (if necessary) to signal-support limits s € [0 — ¢,0 + €].

v Gaussian noise: € ~ N(0,02). Then G(u) = ®(u/o)and gives

equation 41

s*(0)=0+0cD71(0),

which also uniquely determines the cutoff for each 6.

Equilibrium cutoff s*(8) as a function of &

Probability of peg collapse (Uniform noise)

1.50 5*(8) — Uniform noise (closed-form) 0.9 Uniform noise — N=11
s*(8) — Nermal naise (closed-form via invedf) Uniform noise — N=101
1.25f --- 457 line:s =8 0.8} — Uniform noise — N=1001
1.00 e 507
=) T 2
% 075 e g 06
L E
5 050 S z
o 0. —
@ ez ’ﬁ 05
= - a
£ 0325 e 204
& 2 =
=] P 3
0.00f -7 &03
—0.25 0.2
—0.50F : i i i i 01
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 10

Fundamental &

Source: Authors calculation
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Probability of peg collapse (Normal noise)

Normal noise — N=11
Normal noise — N=101
—— Normal noise — N=1001

ﬁ MM

Pr(collapse) (simulated)
o © © ©o o © o
w = w o ~ (=] o

e
Y

o
=

0.0 0.2 0.4 0.6 0.8 1.0
Fundamental 6

Figure 4the equilibrium cutoff for two noise laws (uniform and normal) and simulates finite-N
collapse probabilities

Source: Authors calculation

Now we will extend the model by:

v' changing the government abandonment rule (e.g. collapse iff « > k(8)with a more
general function),

v'adding heterogeneous costs for attackers (resulting in a more general cutoff
equation)

Government: peg collapses iff the fraction of attackers a = k(8)for some known
function k:[0,1] = [0,1].

Agents: each agent iprivately observes s; = 8 + g;where &; ~ N(0,02). Each agent has
private cost c;drawn iid from H(c)(l used uniform on [0,1]). If the attack succeeds (peg
collapses) the attacker gets benefit 1 — ¢;; if not, payoff is —c;. Expected payoff from
attacking, conditional on signal s, is:

equation 42

E[payoff | s] = pcollapse(s) i o

where peonapse (S)is the posterior probability (given signal s) that the equilibrium
aggregate behavior of others yields a = k(6). Thus an agent with cost cattacks iff ¢ <
Pcollapse (). If His Uniform[0,1], the conditional fraction of attackers among agents who
observed Signal S equals H(pcollapse(s)) = pcollapse(s)

Equilibrium object for fixed true 6: find cutoff s*(6)such that, when every agent uses
the strategy “attack iff ¢ < pconiapse(s)” (aNd peonapse (S)is computed assuming other agents
use cutoff s*(0)), the resulting aggregate fraction a(s*; 8)equals x(0). This is a numeric fixed-
point (nested integrals) but straightforward to compute numerically.For the simpler case
without heterogeneous costs and with government rule @ > k(6), the continuum closed-form
cutoff is
equation 43

G(s*(0) —0) = k(8) = s*(6) =6 + G~L(k(6)),
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so for normal noise s*(8) = 6 + a®~1(k(0)). This gives the analytic comparative statics
ds*/ do = ®~1(k(9)). To handle heterogeneous costs and fully Bayesian updating we did
the following (numerical, vectorized):
e Prior on ftaken uniform on [0,1].
e For a grid of candidate signals sand a grid of candidate 6values, | compute the
posterior p(6 | s)(closed-form via Normal likelihood).
e Given a candidate cutoff s*the posterior collapse probability given signal sis

equation 44

pcollapse(S; s*) = f 1{G(s* —6) = k(8)} p(B]s)do

(Recall G(u) = ®(u/a)for Normal noise.)

e With cost ¢ ~ U[0,1]we have H(p) = p. So the implied fraction attacking (conditional
on true 9) is

equation 45

a(s*;0) = fpcollapse(S;S*)f(Slg) ds

e Solve for s*so that a(s*; 8) = k(6)(1D root-finding over s*). This is done for each 6on
a grid and for each noise level ayou choose.

Equilibrium cutoff s¥(8) for different o (heterogeneous costs, c~U[0,1]) s* vs o (selected 9)
0=0.05 . S
0=0.2 0.8 8=0.2
— 0=0.4 6=0.5
0.8H--- 58 07 —— 6=0.8
0.6
0.6
g G
a 5 0°
04 04
02 0.3
0.2
23 o G 08 005 010 015 020 025 030 035 040
] o

Figure 5 comparative statics of the equilibrium cutoff s*(0)for different noise levels o

Source: Authors calculation

When agents are homogeneous in the relevant sense (or the equilibrium condition reduces
to G(s* — 8) = k(0)), the equilibrium cutoff solves
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equation 46

G(s*(0) — 0) = k(6).

For Normal measurement noise G(u) = ®(u/0), this gives the closed form

equation 47

s*(0) = 6+0dL(k(0))

Comparative statics with respect to noise ¢ are immediate:

equation 48

as*(6)
do N

O (k(9)) -

Next, we will plot previous result for:

v
v

v

Change «(6)— try a step, nonlinear, or empirically estimated x(8)and re-run.
Different cost distributions — use Beta, exponential, or two types (mass point +
continuous). I'll re-run.

Show comparisons with closed-form case (i.e., show analytic s* = 6 +
o®~1(k(6))alongside the richer heterogeneous-cost numerical solution).

Change payoff structure (benefit # 1, different payoffs when peg holds) and show
how formulas adapt.

kappa=linear, H=beta(2,2), B=1.0, 0=0.2

—®— numeric (heterog costs)

1.25 analytic (homog benchmark)
..... s=0

1.00 ~

0.75

0.50 A

0.25 /~/M
0.00 1

—0.25 A

s%(B)

—0.50

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6 scenario analysis heterogenous costs and homogenous benchmark

Source: Authors calculation
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Table 1 scenario analysis heterogenous costs and homogenous benchmark
theta s* num  s* anl
0.02 0.02 -0.39075
0.052 0.052 -0.27315
0.084 0.084 -0.19173
0.116 0.116  -0.12305
0.148 0.148 -0.06101
0.18 0.18  -0.00307
0.212 0.212 0.0521
0.244 0.244 0.105301
0.276 0.276  0.157047
0.308 0.308 0.207695

© 0o NOoO Ok WDN -~ O

Source: Authors calculation

Effect of cost distribution H

 When many agents have low costs (H puts mass near 0), small posterior probabilities
Peollapse () still generate substantial attacking fractions: numeric s*will be lower
(agents attack more easily) compared to the homogeneous benchmark.

o If costs are concentrated high (most agents expensive to attack), numeric s*rises —
it's harder to produce the mass needed to meet k(0).

Effect of benefit B

e Increasing Bscales effective thresholds: fraction attacking at a signal becomes H(B -
Pcollapse (8))- So higher B— larger attacking fractions for the same posterior — you

need a higher cutoff s*to keep a(s*) = k(8). Thus s* typically increases with B.
Effect of noise o

 Inthe closed-form homogeneous case the sign of ds*/ doequals the sign of ®~1(x(8)).

o With heterogeneity, the numeric s* often behaves similarly but the magnitude and
sometimes sign can be altered by the shape of Hand by B—because H(B-p) is
nonlinear in p. For example, with H very convex near 0, small increases in p due to
more noise could produce larger increases in attacking mass, shifting s* more.

Kappa(08) shape
o If k(8)is increasing in 6 (like linear), you typically get s* moving roughly in step with
O (often near the 45° line).

e If k(8)has discontinuities or steps, numeric s* can show kinks and locally larger
sensitivity.
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Table 2 Mapping this extended model to an applied setting

Symbol Meaning Real-World Analogy
6 Fundamentals Reserves, fiscal balance, productivity
k(0) |Collapse rule Central bank defense commitment
o Signal noise Information precision, market transparency
S; Private signal Market analyst’s data, trader’s info

B Benefit from attack Profit per speculative short
c;, H(c) |Attack cost distribution|Risk aversion, liquidity constraints, access to leverage
a(s) [|Fraction attacking Speculative pressure / market sentiment
s*(8) |Cutoff signal Market threshold for speculative action
Source: Authors calculation

Global-game (Morris—Shin) — unique equilibrium derivation

We introduce noisy private signals s; = 6 + ¢;with continuous distribution G(CDF) and
density g(PDF). Agents are symmetric and Bayes-rational. We look for symmetric monotone
cutoff strategies: there exists a function s*(6)such that agent iattacks iff s; < s*(6)(i.e., lower
signal = worse perceived fundamental — more likely to attack).

Key steps:
1. Given true 0, the fraction of attackers (in the continuum limit) is

equation 49

a(@) = Pr(s<s*(0)10) = G(s*(8) —0).

(This is because s — 8 = ¢ has CDF G.)

2. Government collapses iff a(8) = k(6). In an equilibrium, the cutoff s*(8)should be the
signal making an agent indifferent between attacking and not attacking given the
expected collapse probability resulting from the strategy s*. Under the standard
reduced-form payoffs and homogeneous costs (or normalized units), this indifference
condition reduces to:

equation 50

Pr (collapse | s; = s*) = k(6).

However, because with continuum players the fraction attacking given 6 is a(8) =
G(s* — 0), the natural self-consistency requirement is
equation 51

G(s*(6) — 6) = k(6).
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3. Existence & uniqueness: For each fixed 6:

e u - G(u)is continuous, strictly increasing, taking values in [0,1].
o So the equation G(u) = k(6)has a unique solution u = G~1(x(0)).
e Therefore s*(68)is uniquely given by

equation 52

s*(0) =0 + G 1(k(0))
Uniform noise

If ¢ ~ Uniform[—¢, €], then for u € [—¢, €],

equation 53

u+t+e

G(u) = e

Solve G(s* — 6) = k(0):

s*—0+¢

o =k(0)=>s" =0+ 2¢ek(0) —«.

If k() = Bthis simplifies to

s*(0) = 6(1+2¢) —¢

Clip s*to lie within [0 — ¢, 8 + ¢]if needed.
Normal noise
If ¢ ~ NV (0,02), G(u) = ®(u/o)with dthe standard normal CDF. Solve

equation 54

“_g
® (S — ) = 1k(0) = 5°(0) = 6 + g~ (1(6)).

If ©(6) = 6then
Comparative statics wrt noise a(normal case)

Differentiate the normal closed form:
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equation 55

9s*(6) _

= 071 ((0)).

Interpretation:

o Ifk(8) > 1/2then s*(0)increases with o.
e Ifk(0) < 1/2then s*(#)decreases with o.

This is the simple analytic comparative-static result we used earlier.
Heterogeneous-cost extension (general H(c)and benefit B)
Now let c;be iid with CDF H(c)on [0, ). Suppose payoff from a successful attack is
B — ¢, from failed attack —c, and from not attacking 0. Given a signal s, an agent forms
posterior over 8and thereby computes the posterior probability that the peg will collapse if the

population uses cutoff strategy s*(-). Denote by

equation 56

pcollapse(S;S*(')) = Pr (collapse | s)
the posterior collapse probability (this depends on how the cutoff maps 8 — s*(8); in
the continuum limit and with a prior (8)one computes this via Bayes’ rule).
An agent with cost cattacks iff:

equation 57

B- pcollapse(s) =2 c=>c<B- pcollapse(s)-

So conditional on signal s, the fraction of agents who attack is H(B - pcoliapse (5))-

Given true 6, the ex ante fraction of attackers (averaging over signals) is

equation 58
a(s0) = fH(B 'pcollapse(S;S*))f(s | 8)ds,)
where f(s | 8)is the density of s = 0 + ¢.

Equilibrium self-consistency with the government rule a > x(6)becomes: for each 6,
s*(0)must satisfy
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equation 59
a(s*(-);0) = x(6)

where adepends on the entire function s*(-)via the posterior pcgiapse(s; s*). This is a fixed-

point equation in the space of functions s*(:). In practice we solve a(s*(:);0) = k(6)
numerically:

e For a candidate s* (), compute for each observed signal sthe posterior 7 (8 | s)and
then

equation 60

pcollapse(S; s) = f 1{G(s*(0) — 6) = k(0)}(O | s) mdO

¢ Then compute
equation 61
a(s*;0) = fH(B ) pcollapse(S;S*))f( s|6)ds

e Solve a(s*; 0) = k(8)for s*(8)for each 6(1D root-finding). Iterate (or solve directly if
monotonicity holds).

when H(x) = x(uniform costs on [0,1]) and B = 1, the algebra simplifies and one
recovers a form close to the basic equation used in Morris—Shin.

In a finite population of Nagents, given a cutoff s*(8)and true 6, the realized fraction
of attackers is random:

equation 62
1 N
an(0) =5 ) 1{si < 5°O)):
i=1

By the law of large numbers @y (6) = a(0) = G(s*(0) — 8)as N — oo. For finite Nwe can
evaluate the collapse probability

inequality 11
Pr (@y(6) = x(0))

via Binomial approximations or Monte Carlo simulation.
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Morris—Shin global-game logic into a simple central-bank sterilization framework

Here we extend Morris-Shin model of currency attacks with sterilization'? by Central bank. Key
assumptions here are:

> Speculators receive private signals s; = 6 + &;, &; ~ N(0,02).

» Government abandons the peg iff fraction attacking a > k(8). Baseline k(6) = 6.

» Sterilization is modeled as a short-run policy that increases the government's
effective threshold by &: kg (0) = clip(6 + §,0,1). (Interpretation: sterilized
intervention temporarily strengthens defense credibility.)

» We study how this policy shifts the equilibrium cutoff s*(8)and the finite-N collapse
probability.

With Normal noise, the global-games fixed-point becomes

equation 63

g

0 (229

so the closed-form equilibrium cutoff is

equation 64

s*(0) =6 + o d 1 (k(0))
(Apply K = K,o0r Kgert0 cOMpare.)

Comparative static with respect to o:

equation 65

9s*(6)

o= 071 (k(0)).

2 In economics, "sterilization" refers to a central bank's action to offset the effects of foreign exchange market
interventions on the domestic money supply, using techniques like open market operations to maintain monetary
stability
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Figure 7 Morris—Shin global-game logic into a simple central-bank sterilization framework

Source: Authors calculation

\ %

Now we will:

Make sterilization dynamic (CB chooses sterilization intensity, pays interest cost that
reduces reserves; model reserves evolution and solve Bellman or simple open-loop
path).

Replace the ad-hoc x(8) + § rule with a micro-founded relationship: x(8; R) where R
= reserves and sterilization changes R via purchases/sales and domestic asset
sales.

Introduce heterogeneous costs H(c) and solve the integral fixed-point numerically
(as we did earlier) under sterilization.

Compute welfare/CB cost tradeoffs: how much sterilization (&) reduces collapse
probability vs its fiscal cost.

Model is as follows:

Environment and signals

Fundamental (fixed): 6.

Private signal: s; = 6 + &;, & ~ N'(0,02).

Government/CB: defends peg. Peg collapses if fraction attacking @ > k(6; R).
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» Heterogeneous attacker costs: ¢; ~ H(-)with CDF H(l use Beta(2,2) in the code).
> Benefit of success normalized to B = 1for the demo (you can change).

2. Micro-founded collapse threshold k(8; R)
| used a simple, intuitive functional form where reserves raise the tolerance for
attacks':

equation 66

k(0;R) =clip (8 +a- 0,1)

R+ Rscale '

with parameters a € [0,1](how strongly reserves help) and Ry, > 0(scale).
3. Static equilibrium cutoff for a given R(heterogeneous costs — integral fixed point)
For a fixed reserve level R, define k(0): = k(6; R). With continuum Bayesians and
heterogeneous costs H, the self-consistency is:

> For any candidate cutoff s*, compute the posterior collapse probability conditional on
observing signal s:

equation 67
Peonapse(5,5") R) = f HG(s"(®) — £) = k * O} |n(tls)dt

where G(u) = ®(u/o)for Normal noise and n(t | s)is the posterior over
fundamentals.

> Given peopapse (s), fraction of attackers among agents with signal sis H(B -

pcollapse (S))
» The aggregate fraction attacking when the true fundamental is @is

equation 68

a(s;0,R) = J-H(B ) pcollapse(S;S*:R)) f(s16)ds.

> The equilibrium cutoff s*(6; R)solves
equation 69

a(s*(6;R); 6,R) = k(6)

3 In mathematics and computer science, "clip" or "clamping" means to constrain a value to a specific range,
ensuring it does not go below a minimum or above a maximum.
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This is the same integral fixed-point we implemented numerically earlier, specialized to
Normal signals.

4. Dynamics: reserves, sterilization, and CB cost

e Reserves evolve deterministically under a constant open-loop sterilization intensity
uper period:

Riy1 = max (R; — u, 0).
(This is a simple, transparent open-loop policy; you can switch to an optimization with
state-dependent u;.)

> Per-period CB financial cost of sterilizing: cgier(Us) = Kcost - Us(linear per-unit).
> Social loss if collapse occurs in period t: Legjiapse-
> Obijective (central planner / social welfare): minimize discounted expected sum over

horizon T
equation 70
T-1
I}};g Z BH{Kcosttts + Leotiapse - Pr (collapse at t | R;)}
~t=0

with u,chosen open-loop constant in our implementation, R.as above.
Interpretation & robustness

Why did the optimal u come out zero? In this particular parameterization the
endogenous equilibrium cutoff s*(even without sterilization) is such that the finite-N collapse
probability is essentially zero; sterilization costs money, so the optimal trade-off is to not
sterilize. This is an informative outcome: it shows how reserves + heterogeneity can make
defense unnecessary in some calibrations. If you want sterilization to matter, change
parameters that make collapses more likely: reduce R,(small reserves), raise signal noise
a(more uncertainty), increase LgjapseOF Change H to make more speculators cheap to attack
(e.g., put mass at low cost), or increase horizon T. | can re-run with any of these
choices.Limitations of the compact run: | used small grids and modest MC draws to ensure
the experiment finishes quickly here. For a polished policy analysis you should run higher grid
resolution, larger N and trials, and possibly optimize over state-dependent policies
u; (R)(dynamic programming / Bellman) rather than constant open-loop u.

Morris—Shin global-games version of the Diamond-Dybvig bank-run model

This application of global games to a rather modified Diamond, D. W., Dybvig, P. H.
(1983) model. In the classic model:

T =0 T =1 T =2
Unit investment worthsr; < 1y worths 1,
(illiquidity)
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Probability p that money are needed in period 1

Expected utility is given :

equation 71

EU =pU(r)) + (1 —p)U(ry)
llliquid assets 1 r

Liquid assets rn >1 r, <Tr

Illiquid assets are making higher returns
equation 72
ER=p+ (A—-p)r >try + 1-0)n,
Liquid assets generate higher expected utility
equation 73

EU=pU() + A=p)U() < pU() + (1-p)U(>)

Good equilibrium:

» depositors in need for money in period 1 do that, others wait until period 2

Bad equilibrium (bank run)
* depositors expect others to request their money
* banks have to sell illiquid assets

« if more than the share f of depositors request their money in period 1,and banks assets
are spent, where f is given as:

equation 74

fri=pr—-1+1-p)

equation 75

pr1+ (1 —p) 1
f=——7F——=pr+0-p—-<1
" "
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Definition 3

Equilibrium where all depositors expect others to withdraw their money in period 1 is
self-prophecy equilibrium - a Bank Run. Let 1 > 1 denotes all cash withdrawals 1 — 1 are
unforced withdrawals:

equation 76
(61 (/T), C, (;1)) |1 = real payments
When 1 — 1 is not very high we have C;(1) = 1 but:

equation 77

<1—/1—(}1“—,1)(%)> .

C;(A)=R —= =15 1——.(1—1)

In previous (1 — 1) are unforced cash withdrawals G - 1) are costs of cash. When (1 — 1)

is higher if 1> 0.55 bank is forced to liquidate everything. Late depositors will receive
nothing

equation 78

C,(A)=0

Early depositors receive less than was promised to them:

equation 79

A+(1 =D 055
_ = <1
7 7

C,(2) — C,(1) are incentive of F to withdraw unforced. Let's note that C;(1) — C,(2)
is an increasing function of 1. Now we assume that the bank temporarily closes after
withdrawals 2. Gives C; of the first 2 withdrawals but later forbids withdrawals. Bank opens in
period 2, and makes payment to the rest F;, C, = 1.5.Potential solution is LLR or lender of last
resort. We assume that CB has resources until 1, due to the government taxations lends by
rate, 1+ r € [1,R],r = 50%.When bank faces withdrawals, 1— 1, decides to lend from CB
instead of eliminating projects. This means:

¢, (2) =

equation 80

RA1-D)—-1(1+7r)(A-2)
1-1 -

C,(2) = R+%(R—(1+r))=1.5

39



Manuscript received: 24.11.2025 International Journal of Economics, Management and Tourism
Accepted: 30.11.2025 Vol 5, No. 2, pp. 7 - 56

Online: ISSN 2671-3810

UDC: 336.747:657.47].01

Original research paper

Bank equilibrium here disappears. LLR stop inneficcient liquidations, and in good
equilibrium there are no forced withdrawals 1 — 1 = 0.Next we will code and plot previous: Top
panel: early payment C;(1)(gold), late payment without LLR C,(21)(blue), and late payment
with LLR (green dashed, at Rfor our parameter choice). The shaded area shows how LLR
raises late payments and prevents destructive liquidations. Bottom panel: incentive gap C; —
C,(positive values mean depositors prefer to withdraw early even if they don't need cash,
driving runs). The dashed blue line shows the incentive gap when LLR is available — it
becomes negative (no incentive to withdraw) across most of the range.

Diamond-Dybvig: Early and Late Payments vs. Expected Withdrawal Share ildeA
1751 : LLR improvement (C2 with vs without LLR)
i €,(A) (early payment)
———-—--————-——-——————f ————————————— C:(A) no LLR

== C,(A) with LLR

=
n
=)

A=0.55 (forced liquidation threshold)

Payments C1, C;
=} o = =
n . o )
o w (=] wi

o
N
v

o
o
=]

Incentives to make unforced withdrawals (positive gap encourages withdrawals)
€,-C; (no LLR)
€y = C; [with LLR)

- A=0.55

1.0

08r

0.6r

0.4r

021

0.0

Incentive gap C, - C,

|
o
[N]

]
e
s

-06 0.3 0.4 0.5 0.6 0.7 0.8 0.9

} (expected withdrawal share)

Figure 8 illustration of the Diamond—Dybvig run vs. no-run tradeoff and the effect of a lender-
of-last-resort (LLR)

Source: Authors calculation
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Diamond-Dybvig: Forced Liquidation Dynamics

175 A =
Ci(A)

—— G(A) (no LLR)
—=- Forced liquidation threshold (0.55)

1.50
1.25 A

1.00

Payments

0.25 A

0.00

T T T T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9
A

Figure 9 Diamond—Dybvigforced liquidation dynamics

Source: Authors calculation

In this game true fundamental 6 € [0,1]measures bank strength / severity of bad state
(higher 6= more fragile). Each depositor receives a private signal s; =0 + ¢;, with ¢ ~
iidV'(0,02). If a depositor withdraws early (“attack”) and the bank survives, she gets payoff 0
(normalized). If the depositor withdraws and the bank fails (run), the withdrawal is successful,
and she receives payoff B — c;(benefit minus cost). If she waits and the bank survives, she
gets higher continuation payoff — but we capture the strategic part via a cutoff strategy. Bank
collapse rule. Let abe the fraction of depositors withdrawing early. The bank collapses (run) if

inequality 12
a = k(0),

where k(0)is the threshold fraction the bank can absorb. A natural microfounding is
k(0) = 8(worse fundamentals — lower tolerance), but any increasing mapping works.

Depositor strategy:

> Suppose depositors use symmetric cutoff strategies: withdraw if s; < s*(8). (Lower
s means perceived fundamentals are worse — more likely to withdraw.)

Aggregate fraction withdrawing (continuum)
» Given true 6, the fraction withdrawing (in the continuum limit) is

equation 81

a(8) = Pr(s < s*(6) | 6) = G(s*(6) — 6),
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where G is the CDF of the noise €. For Normal noise G(u) = ® (g) Equilibrium self-
consistency

» The bank collapses if a(8) = k(0). A symmetric cutoff equilibrium requires that the
chosen cutoff produces the fraction that equals the threshold «(8). That gives the
fixed-point condition which is given by:

equation 82
G(s*(0)—0) =k(O

Because Gis strictly increasing and continuous, previous has a unique solution for
s*(8)for each 6. This is the Morris—Shin selection. Closed form for Normal signals:If ¢ ~
N(0,0?), then G(u) = ®(u/c)and solving previous yields the closed form

equation 83
s*(0) =0+ 071 (k(0))

Comparative statics gives: ds*/ do = ®~1(k(6)). So, whether more noise raises or
lowers the cutoff depends on whether k(f)is above or below 1/2.
Heterogeneous withdrawal costs

> If depositors face heterogeneous private withdrawal costs ¢; ~ H(c), the fraction who
withdraw after seeing signal sequals H(B - pcoliapse (5)), Where peojiapse (s)is the

depositor’s posterior probability that the bank collapses given s. This makes the
equilibrium condition an integral fixed point:

equation 84
a(s*;0) = fH(B ) pcollapse(S; ) f(s16)ds =k(0),
Where:
equation 85
pcollapse(S; s*) = fl{G(S*(t) —t) 2 k()}n(t|s)dt.

This generally must be solved numerically (as in the Morris—Shin heterogeneous
extension). Bank holds liquid reserves Rand illiquid loans of face value Q(payoff in the good
state). If the bank is forced to liquidate loans at fire-sale value ¢ € [0,1], the liquidation value
is ¢Q. Let 8 € [0,1]be the “fundamental” which we map to liquidation recovery: ¢ = ¢(6). For
simplicity one natural mapping is ¢(8) = 6(higher 6= higher recovery fraction). If a fraction aof
depositors withdraw early, the bank can meet withdrawals without insolvency if
inequality 13

LS 101
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If aexceeds that capacity the bank must liquidate at a loss and is considered to have run /
failed.We define the collapse threshold

equation 86

k(0; R) = min {w, 1}

Depositor ihas private signal s; = 6 + ¢;, g ~ iidG(e.g. N(0,02)).

» Depositor chooses action a; € {0,1}(1 = withdraw early, 0 = wait).

» Payoffs (reduced form): if withdraw and bank fails — payoff B — ¢;; if withdraw and
bank survives — payoff —c;(cost of early withdrawal); if wait — normalized payoff
0(or continuation payoff). c;are private heterogeneous costs with CDF H(-).

» Assume symmetric cutoff strategies: withdraw iff s; < s*(6; R).

» Given fand cutoff s*(8; R), the fraction withdrawing is

equation 87
a(0;R) = G(s*(6;R) — 0).

» The bank collapses when a(6; R) = k(8; R). In symmetric equilibria the cutoff must
satisfy the self-consistency condition that the induced a equals the threshold:

equation 88

G(s*(8;R) —0) = k(6;R)
Because Gis strictly increasing, previous has a unique solution for s*(8; R)for each
(8, R)— this is the Morris—Shin selection mechanism.Closed form (Normal signals): If
G(u) = ®(u/0o), solving previous yields

equation 89

s*(O;R) =0+ 0@ (k(0;R))
This is the homogeneous-cost closed form. For heterogeneous ¢ ~ H, conditional on
observing san agent’s posterior collapse probability is

equation 90

pcollapse(S;S*:R) = f HG(G™ (G R) —t) = k(G R)m(t | s)dt .
Fraction that withdraw among those who saw sis H(B - pcoapse (5)). Aggregate fraction
when true fis

equation 91

a(s*;0,R) = fH(B : pcollapse(S; sYR)) f(s16)ds.
The equilibrium cutoff solves a(s*; 8, R) = k(6; R)for each 6. Numerical root-finding
completes the solution.Policy modeling (concepts)

> Reserves Renter directly into x(8; R)(raising R increases capacity and increases k).
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> Deposit insurance: reduces private benefit of early withdrawal — model as reducing
the effective benefit B — B(1 — ins_cover). The regulator’s budget cost equals
expected shortfall x probability of run (paid on failure).

> Disclosure: improves the precision of signals — reduces o; more precise signals
typically reduce coordination failures (but comparative statics can depend on
kvalues; Morris—Shin result: 9s*/ dg = ®~1(k)).

Next, we will code and plot this model:

Equilibrium Cutoffs s*(68,¢) under Different Policies

1.25 4

1.00 4

0.75

0.50 4

0.25 4

0.00

Cutoff signal 5#(8,9)
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0.2 0.4 0.6 0.8
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Average Bank Run Probability vs Policy Intensity
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c o o 2 o
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[¥,) =~ (=] M U
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0.525 ~

0.500 A

0.0 0.2 0.4 0.6 0.8 1.0
Policy strength ¢ (e.g., insurance / liquidity support)

Figure 10 Equilibrium cutoffs under different policies and average bank run probability vs
policy intensity

Source: Authors’ own calculations

Morris—Shin global-games version of the Diamond-Dybvig bank-run model
(Heterogenous depositor types)

So, we are extending previous model DD global games with heterogeneous depositor
types. Model is as follows:
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Fundamental: 8 € [0,1](bank asset liquidation quality).

Private signal: s; = 6 + &;, & ~ iidN'(0,02).

Depositors decide: withdraw early (1) or wait (0).

Bank capacity (micro-founded): if fraction awithdraws, bank meets withdrawals iff

YV VY

equation 92

R+¢(0)0Q
D

a < k(6; policy) = (clipped to [0,1]),

where R are reserves, Q are illiquid loans, and ¢(0)is the fire-sale recovery (we often set
®(0) = ). Heterogeneous costs

> Each depositor i has private cost c;of withdrawing, iid with CDF H(c). Benefit if
withdrawing when bank collapses is B(net of normal reward); if bank survives, early
withdrawer may get less — simplified reduced form: expected benefit of withdrawing

equals B - peoliapse (S)Where pegiapse (5)is the depositor’s posterior probability of

collapse conditional on her signal s.
> Given signal s, everyone with cost ¢; < B - peojiapse (S)Will withdraw. So the fraction

who withdraw conditional on s is :H (B - peojiapse ($))-

Suppose depositors use a cutoff rule s*(-)(withdraw iff s < s*). Given candidate cutoff
profile s*(t)over t, a depositor seeing signal s forms posterior m(t | s). For each possible t
the depositor would expect the bank to collapse if the fraction triggered by cutoff at t exceeds
k(t). The depositor thus computes:

equation 93
Peottapse(s) = f 1{G(s"(®) — £) = k(0)} T(ts)dt

where G (u) = Pr (signal < 6 + u) = ®(u/o)for Normal noise.

Equilibrium fixed point :The aggregate fraction withdrawing when the true fundamental is
Ois

equation 94
a(s*;0) = fH(B : pcollapse(s)) f(s180)ds.
The equilibrium cutoff s*(8)must satisfy

equation 95

a(s™(6);6) = x(6)
For Normal signals and homogeneous costs it reduces to the closed form:
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s*(0) =0+ 0 D71 (k(0)).

Avg run prob vs g by H
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Figure 11 avg.bank run prob. Vs ¢ ,H

Diamond Coconut search model and global games

This part is due to Diamond (1982) model. First, we will outline the model features then
we will present global games framework in this model. Utility function in this economy is:

U=y—c
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y —output consumption

¢ —production costs (disutility of labor )

V =discounted lifetime utility V = e™""iU,,

v a —arrival rate in the economy (new workers)

AN

In this economy:
inequality 14
c=z2c>0

Call production possibilities below c* are undertaken. Furthermore :

v é=a(l—-e)G(c*)— eb(e) -employment rate
v' b — probability of successful match

In steady state ¢ = 0
equation 97

de B a(l—e)G'(c)
do le=0 = b(e) + eb'(e) + aG(c*)

Individual choice is:
equation 98
W, = b(y — We — W,)

paseHKa 1
C*
rW, = af W, =W, — c)dG(c)
0

rW,-discounted value of having coconut (being employed)
W, — W,,-value of discounted utility of being employed versus being unemployed.
Furthermore:
equation 99
by +a ¢ cdG
¢ =We =Wy = %a()
equation 100
dc®  (y—c")b’

de r+b+aG >0

equation 101

dc* dc*\?
dZC* (y—C*)b” —2b’<%)—a6’ (%)
de? r+b+aG
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With probability b employed has trade opportunity that is increasing instant
consumption y and change in status. Every unemployed that accepts production possibility
has instantaneous utility function ¢ and status change in employed.

In the static version of this model:

v ¢ = f(y) -aggregate cost function
v f'">0,f">0
v p(y) -probability of trade.

Utility(welfare):
equation 102

U=yp(y)—c

equation 103

r(») =1
Optimality conditionis : p(y) + yp'(y) = f'(y)

y + g-aggregate demand g -output produced for public consumption

equation 104

U=yp(y+g)—g-—V(g) — c- (welfare)

in equilibrium production decision is :

equation 105

py+9) =1
dy p’ dy
e S <05 —2>0
ag~ w7/ dg

Optimal public consumption is:

equation 106

W 14Vt — 2 =0
dg—yp p+yp' —f g~

equation 107

d rerl
V’=1—y’p(1+—y)—1+ Py

= <1
dg pl_fll
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In steady-state utility per capita satisfies:

equation 108

Q(t) =eb(e)y —a(l — e)f cdG
0

v eb(e) rate of sales
4 a(1 — e) is rate of production
v foc cdG average cost per project,

Societal discounted utility Q(t)
equation 109

— * —-rt
W_fo e "tQ(t)dt

c

a(l—e)G'(c)
r+b+eb +aG(c*)

ow
T 5o =—a(l—e)c*G'(c") + [y(b +eb") + af
0

cdG

In previous:
v —a(1—e)c*G'(c*)-increase in cost of production
v [y(b +eb’) + afoc ch] al1—e)s (c))

Trbreb'+aG(c) change in output and production costs

No intervention equilibirum:

equation 110

ow eb' +c*(r+b+aG)a(l —e)G’ a(l—e)G'eb’
r =—a(1—e)c*G'+y ( L ) = ( ) (y—=c)>0
dc* r+b+eb +aG r+b+eb +aG
Steady-state employment e vs arrival rate a Steady-state cutoff c* vs arrival rate a
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Multiple equilibria: employment e vs a (scatter of roots) Multiple equilibria: cutoff c* vs a (scatter of roots)
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Figure 12 Steady state employment vs arrival rate and steady-state vs arrival rate (second
panel are multiple equilibria of previous)

Source: Authors’ own calculations
Now, we will do global reformulation of the model: Each firm receives a private noisy signal:

equation 111

Si =A+€i,€i ~ N(O,O'Z)

Each firm must decide whether to create a vacancy based on its belief about how many
others will also do so — exactly like in currency attack models. Each firm’s expected payoff
from posting a vacancy is:

equation 112

M;(s) = qOGs))A—-w]—c

where 6(s;)is the expected tightness given private signal s;.
Each firm attacks/posts if expected profit =2 0, i.e.
inequality 15

E[A | s;] = A*(0)
for some cutoff A*, where A is fundamental productivity. In the global game, we have:

equation 113

s*—A
a(A)=Pr(5i25*(A)):1_q)< o )

And the equilibrium cutoff s*satisfies a self-consistent condition:

equation 114

E1 (Expected profit) given s* = 0
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Since the mapping between A and the proportion of participants is now strictly monotone
(because of the Gaussian smoothing), there can be only one fixed point.

Table 3 Common knowledge game vs noisy game

Case Description Equilibria
Common Knowledge Multiple intersections of firm best response and Multiple 8’s
(No Noise) equilibrium condition (low/high)
Global Game (Noisy Expectation curve smoothed out Unique 6*

Signal)

Next, we will code and plot results

Diamond Search Model: Multiplicity vs Global Game Uniqueness

—— Deterministic model {(multiple equilibria)
Global game (unique equilibrium)

Market tightness 8
-

T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Productivity (A)

Figure 13 Multiple equilibria vs unique eq.in global game of matching model
Source: Authors’ own calculations

We will do step-by-step derivation of the equilibrium cutoff s*in a Diamond search
model reinterpreted as a global game (firms get noisy private signals about productivity
A).There is a continuum of identical potential posting firms and a continuum of searching
workers. Let market tightness be 8 = v/u(vacancies per unemployed), where v= mass of
vacancies, u= mass of unemployed. The matching function is

equation 115

m(u,v) = Mu*v1=%,0<a<1,M >0

A firm that posts a vacancy meets a worker with probability

equation 116

q(6) =
(we can use any decreasing q(6).)
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The productivity (fundamental) is A. Firms do not observe Aperfectly; each firm receives a
private signal

equation 117
s=A+¢ge~N(0,02),
If a vacancy posts and fills, the match surplus (flow) is S(4). For simplicity take
S(A) = A — wwith wage w(or simply S(A) = Aif wages are normalized out). The cost
of posting a vacancy is ¢ > 0(flow or per-period posting cost in a static decision).
v" Firms decide once (post or not). The game is: each firm posts iff expected payoff = 0

given its private signal and beliefs about how many others post.

Let firms use a symmetric cutoff rule: post a vacancy if s > s*. Given a candidate cutoff s*,
the fraction of firms who post conditional on the true Ais

equation 118

s*—A
a(4;s*) = Pr(s=s"14) = 1—<1>< > )

where ®is the standard normal CDF. If the fraction of firms posting is a, then aggregate
tightness @is proportional to a(since v < aand uis determined by labor market; for the fixed-
mass normalization we can take u = 1so v = aand 6 = «). For concreteness we take the
simple proportionality:

equation 119
0(A) = a(4;s").

Given 6, the job-filling probability is q(8) = M8~%. A firm with signal scomputes its expected
payoff from posting (static decision) as

M(s) = E[q(6(4)-S(A)Is] — c.
Because the post-decision cannot influence others (continuum), the firm treats 6(A4)as a
function of 4 only. With the cutoff rule the firm expects 8(A) = a(4;s*)as in previous'®. Write
this indifference condition explicitly':
equation 120

E[q(a(4;5%)S(A) |s=5"] = c.

By Bayes’ rule, the posterior density of Agiven sis

4 A cutoff s*is an equilibrium cutoff if the firm indifferent at s = s*, i.e.ll(s*) = 0.

15 This is the key condition: given the profile s*(used to compute a(-;s*)), the firm that receives signal exactly s*is
indifferent.
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equation 121

(where gis the standard normal pdf; if prior for Ais uniform on a wide range we can use the
unnormalized expression and renormalize numerically).Then E[ g(a(4;s*)) S(A) | s =
s*] = c¢. becomes

equation 122

Jqla(4;s")S(A) (A Is*)dA = c.

Recall a(4;s*) =1 —® (

[ q(a(4;s)S(A) (A |s*)dA = cis one scalar equation in the scalar unknown
s*.Equivalently, put everything on the LHS as a function F(s*):

S*;A). So the integrand is known given s*. Thus

equation 123

*

F(s*)::fq<1 —CD(S )) S(A)n(Als*)dA—c,

and the equilibrium cutoff solves F(s*) = 0. The mapping s* > a(4;s") =1—- (S*_A)is

g
strictly decreasing in s*for each fixed A. (Higher cutoff — fewer firms post given A.)Thus

s* - q(a(4;s"))is strictly increasing in s*if q(8)is decreasing in 6(remember
g(8)decreases with 8= more vacancies — lower fill prob). Check signs carefully: since
a decreases in s*, g(a)increases in s*if gis decreasing in its argument. (Intuition: a higher
cutoff means fewer posters — smaller 6 — larger q(0). Also, the posterior m(A4 |
s*)concentrates on higher A when s*is higher (because s*is the signal value being conditioned
on). So the expectation of S(A)increases with s*. Combining these monotonicities: F(s*)is
typically strictly increasing in s*. At very low s*the LHS is small (few posters, so small
expected revenue), below c; at very high s*the LHS is large. By continuity there is a unique
root.
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Equilibrium posting fraction with s*=0.334
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0.4 4

Posting fraction a(A; s*)

0.2 1

0.0 1

T
-0.5 0.0 0.5 1.0 1.5 2.0 2.5
Fundamental A

Figure 14 Equilibrium posting fraction with s *

Source: Authors’ own calculations

CONCLUSIONS

The argmax correspondence BR,(:)is nonempty, compact-valued and has measurable
graph. By Kuratowski—Ryll-Nardzewski (and Aumann’s theory of measurable multifunctions)
it admits measurable selectors.Because BR;(x)is an interval and endpoints are measurable
and monotone (single-crossing), the endpoint functions #,(:),u;(-)are measurable and
nondecreasing, so choosing an endpoint gives a measurable monotone best-response
selection.Using this measurable monotone best-response selector inside a Kakutani—-type
fixed-point argument yields existence of a measurable monotone Bayesian-Nash equilibrium.
Combined with the ISD collapse/uniqueness argument, this gives existence and essential
uniqueness for all sufficiently small v. Under the stated model and assumptions, in either limit
o, 1 O(private signals arbitrarily precise) or g, T co(public signal uninformative), there exists a

unique monotone equilibrium in which regime change occursif § < 9,6 = 1— g € (6,0).The

threshold is obtained from the marginal indifference (knife-edge) condition b(1 — #) = c. This
is the standard closed-form threshold appearing in global-game style coordination models.The
Gaussian structure reduces equilibrium characterization to a fixed point of a cutoff operator gG;
the derivative/Lipschitz bound for Ginvolves the factor % ~p(0) = % . \/%;the stated inequality

% < v2mguarantees contraction and hence a unique monotone equilibrium; and because G is

monotone and contracting, iterated elimination of strictly dominated strategies converges to
that same unique profile. With no sterilization reserves fall quickly, probability of collapse is
high,attack cutoff s* is low,loss of welfare or CB costs are low. With sterilization reserves are
sustained, collapse probability is low, attack cutoff s* is low is high, fiscal costs are high.In
Morris-Shin Version of DD(Diamond-Dybvig model): Without policy (¢=0) — runs occur
frequently, even with moderate fundamentals.As @ increases, the bank’s threshold for failure
k(6, p)rises, stabilizing expectations. Run probability declines monotonically — there is
stronger backstop, fewer self-fuffilling runs. The unique equilibrium emerges because
private signals (0>0) break coordination multiplicity.In DD version with heterogenous types of
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depositors: As policy strength ¢ (e.g., insurance, central-bank backstop) increases, average
run probability falls. Effect of heterogeneity H: If H has mass at very low costs (many cheap
withdrawers) — e.g., the mixed distribution with mass at 0 — the system becomes more
fragile: equilibrium cutoffs s*(8)fall and run probabilities are higher at the same ¢ compared
to a H like Beta (2,2). s(6) curves-Increasing ¢ raises x(6,¢), hence increases s* —
depositors need worse signals to withdraw. Heterogeneity changes the numeric s * relative to
analytic homogeneous benchmark; typically heterogeneity smooths and can lower s* if many
cheap withdrawers exist.
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