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Abstract  

Correlated signal games applied to currency attacks with or without sterilization and 
Diamond-Dybvig model with heterogenous costs. We are deriving unique equilibrium in those 
Global games. With heterogenous costs attack or run decisions now feature individual 
thresholds/Homogenous agents mean multiple equilibria (coordination failure), with 
heterogenous agents (there is unique equilibrium).  Some speculators are “small” or “risk-
averse” (high 𝑐𝑖), others are “large” or “informed” (low 𝑐𝑖). The attack starts with low-cost 
speculators and builds up as fundamentals deteriorate. This introduces gradual coordination 
instead of a discrete “sudden run.”In the Bank run model, each depositor has a different 
threshold for early withdrawal. The run becomes partial — not all withdraw simultaneously. 
The heterogeneity can also eliminate multiple equilibria, producing a unique global game 
equilibrium. In terms of payoff externality: Peg collapses if many attack, Bank collapses if many 
withdraw. Sterilization makes worst outcome in Morris-Shin model for: Reserves, collapse 
probability, attack cutoffs 𝑠∗, and introduces higher fiscal costs i.e. higher welfare loss.In the 
global game Diamond search-matching model there is unique (single cutoff θ*) unlike in 
discrete version of the model where there are multiple equilibria (high and low activity).In 
global game version of the model refinement selects unique rationalizable outcome,so 
coordination failure is not possible. 
Keywords: Global games, unique equilibria, multiple equilibria, incomplete information 

JEL codes: C7, C70, C79 

INTRODUCTION  
Many accounts of currency crises or currency attacks, bank runs, and liquidity 

crises give a central role to players’ uncertainty about other players’ actions, see Morris 

S, Shin HS. (2003), and  Angeletos et al.(2006). Coordination failures are often invoked 
as justification for government intervention; they play a prominent role in bank runs, 
currency attacks,debt crises, investment crashes, adoption of new technologies, and 
sociopolitical change. A vast literature models these phenomena as coordination 
games featuring multiple equilibria (e.g., Diamond and Dybvig (1983); Katz and Shapiro 

(1986); Obstfeld (1986),Obstfeld (1996), Calvo (1988); Cooper and John (1988); Cole and 

Kehoe (2000). Games often have many equilibria1. Carlsson and van Damme (1993) 
suggested a natural perturbation of complete information that gives rise to a unique 
rationalizable equilibrium for each player. They introduced the idea of “global games” 

 
1 Even when they have a single equilibrium, they often have many actions that are rationalizable, and are therefore 
consistent with common knowledge of rationality 
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i.e. where any payoffs of the game are possible and each player observes the true 
payoffs of the game with a small amount of noise. They showed - for the case of two 
players two action games - that as the noise about payoffs become small, there is a 
unique equilibrium; the equilibrium strategies played also constitute the unique 
rationalizable strategies. Later, Morris and Shin (1998)  analyzed a global game with a 
continuum of players making binary choices, and this case has been studied in a 
number of later applications.  Morris and Shin (2003) survey some theory and 
applications of global games.Later a number of papers have questioned the theoretical 
rationale for global games and the applicability of the framework for the analysis of 
real world problems. Namely, in most economic environment coordination is important, 
interactions endogenously generate public information2 that might or can be used as 
a coordinating device. Important sources of endogenous public information are market 
prices  Atkeson(2001), Tarashev (2003), Hellwig, Mukherji and Tsyvinski (2006), Angeletos 
and Werning (2006). Global games turn on the relative precision of private and public signals, 
but if we do not know what these noisy signals are in real life, debates about relative precisions 

have no conceptual basis3,see Kurz (2006), Sims (2005a),Sims ( 2005b), Svensson 

(2006),Woodford (2005).Games of incomplete information where players beliefs are 
highly but not perfectly correlated are interesting for several reasons: hey capture in 
simple form the idea that in strategic settings where actions are conditioned on beliefs, 
in particular settings where coordination is important, players need to be concerned 
with what their opponents believe, what their opponents believe about their beliefs, 
see Levin (2006).Second, global games can allow us to refine equilibria in coordination 
games in a very strong way. In some models, we can use global games analysis to 
show that even if common knowledge4 of payoffs gives rise to multiple equilibria, there 
will be a unique equilibrium if the players’ information is perturbed in even a “small” 
way. For this see Morris and Shin, (2003).So we can conclude that under complete 
information, this class of games admits to multiple equilibria. However, adding small 
heterogeneous information delivers a unique equilibrium. Note that the actions of the 
agents are strategic complements, since it pays for an individual to attack if and only 
if the status quo collapses and, in turn, the status quo collapses if and only if a 
sufficiently large fraction of the agents attacks. For instance, in models of self-fulfilling 
currency crises ( Obstfeld, (1986),  Obstfeld, (1996)  Morris and Shin, (1998) ,there is a 
central bank interested in maintaining a currency peg and a large number of speculators, with 
finite wealth, deciding whether to attack the currency or not. In this context, a “regime change” 
occurs when a sufficiently large mass of speculators attacks the currency, forcing the central 
bank to abandon the peg. Next, after this model we will introduce Morris–Shin global-game 
logic into a simple central-bank sterilization framework. Followed by, Morris–Shin global-
games version of the Diamond–Dybvig bank-run model (Heterogenous depositor 
types).Before that we will introduce Heterogeneous-cost extension (general H(c)and benefit 
B). Finaly, we will introduce Diamond Coconut search model and global games.Later we will 
draw conclusion for thete types or class of games.    
 

 
2 Endogenous public information is information that arises as a result of the actions and decisions of market 
participants, rather than being externally provided. A common example is the market price itself, which reflects the 
aggregated private information of all buyers and sellers, see Vives (2017).  
3 Asymmetric information may exist in a large variety of economic settings; it does not always conform to the global 
game notion of “noisy signals”. 
4 We can define common knowledge of an event E as the event where everyone knows E, everyone knows that 
everyone knows E, and so on ad infinitum. 
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Global game  

This part is based on Frankel, D., S. Morris, and A. Pauzner (2000). Global game is 

defined as: 

Definition 1 

The set of players is: {1, … . , 𝐼} , a state 𝜃 ∈ ℝ is drawn from the real line according to 

a continuous density 𝜙 with connected support.∀ players observe signal 𝑥𝑖 = 𝜃 + 𝑣𝜂𝑖 where 

𝑣 > 0 is a scale factor and ∀𝜂𝑖 is distributed according to atomless density 𝑓𝑖 i with support 

contained in the interval[−
1

2
,

1

2
]. The signals are conditionally independent: 𝜂𝑖 is independent 

of 𝜂𝑖for all 𝑖 ≠ 𝑗. The action set of player 𝑖: 𝐴𝑖 ⊆ [0,1] can be any closed, countable union of 

closed intervals and points that contains 0 and 1.That is 𝐴  is closed union of closed  intervals  

such as: 

inequality 1 

⋃ [𝑏𝑚, 𝑐𝑚]

𝑀

𝑚=1

, 𝑀 ≥ 1 

 

If player 𝑖 chooses action 𝑎𝑖 ∈ 𝐴𝑖  ; her payoff is 𝑢𝑖(𝑎𝑖 , 𝑎𝑖−1, 𝜃); 𝑎−𝑖(𝑎𝑗)
𝑗≠𝑖

 denotes the 

action profile of i’s opponents. 

Theorem 1 

𝐺(𝑣) has an essentially unique strategy profile surviving iterative strict dominance in 

the limit as 𝑛 →  0: In this profile, all players of a given type play the same increasing, pure 

strategy. More precisely, there exists an increasing pure strategy profile (𝑠𝑡
∗)𝑡∈𝑇 such that if, 

for each 𝑛; 𝑠𝑣 is a strategy profile that survives iterative strict dominance in 𝐺(𝑣); then 

lim
𝑣→0

𝑠𝑖
𝑣(𝑥𝑖) = 𝑠𝜏(𝑖)

∗ (𝑥𝑖) for almost all 𝑥𝑖 ∈ ℝ . 

Proof: 

The set of players, denoted 𝐼; is partitioned into a finite set 𝑇 of ‘‘types’’ (subsets) of 

players, where 𝑖 ∈ 𝐼  and 𝜏(𝑖) ∈ 𝑇  is the type of 𝑇 ,𝐺(𝑣) is Bayesian game in which each player 

𝑡 ∈ 𝑇  receives signal 𝑥 ∈ 𝑋 ⊂ ℝ ,drawn on common atomless distribution5 𝜇 on 𝑋. Actions lie 

in compact interval 𝐴 = [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥  ] ⊂ 𝑅 .Payoffs 𝜋𝑡 = 𝑢𝑡(𝑎, 𝛼, 𝑥, 𝑣) where αdenotes 

opponents’ aggregate behavior (a one-dimensional sufficient statistic of opponents’ 

strategies), and 𝑣 is an information/precision parameter with 𝑣 ↓ 0representing increasing 

information precision. Assume: 

 Assumption 1 

(Continuity) For each 𝑡 and 𝑣, 𝑢𝑡(𝑎, 𝛼, 𝑥; 𝑣)is continuous in (𝑎, 𝛼, 𝑥). 

 
5 An atomless distribution is a probability distribution that generates a non-atomic measure, meaning there are no 
"atoms" or points of positive probability that are also atoms. A key characteristic is that for any set with a positive 
probability, it's always possible to find a smaller subset with a positive probability. Examples include the continuous 
uniform distribution, where the probability of landing on any single point is zero. 
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Assumption 2 

(Monotone single-crossing / increasing differences) For each 𝑡and 𝑣, 𝑢𝑡has increasing 

differences in (𝑎, 𝑥)and in (𝑎, 𝛼): if 𝑥′ > 𝑥 then the preference for higher 𝑎  is (weakly) stronger 

at 𝑥′ than at 𝑥; similarly for larger 𝛼. 

Assumption 3 

(Informational precision).The parameter 𝑣 controls signal informativeness so as 𝑣 ↓

0 private signals become arbitrarily informative in the following sense: for any measurable set 

𝐵 ⊂ 𝑋with 𝜇(𝐵) > 0 and any two distinct actions 𝑎 < 𝑎′ ∈ 𝐴, for sufficiently small 𝑣 ∀ signals ∈  

𝐵 and opponent aggregates 𝛼attainable (given surviving opponent strategies) such that the 

ranking between 𝑎 and 𝑎′becomes strict (i.e. one strictly preferred to the other) on a set of 

positive measure in 𝐵. (This is the formal, qualitative version of “noise → 0” used below.) 

Apply the iterative elimination of strictly dominated pure strategies (ISD) in each game 

𝐺(𝑣). Let 𝑆(𝑣)denote the set of pure strategy profiles that survive ISD in 𝐺(𝑣). Then there exists 

a profile of measurable, nondecreasing functions 𝑠∗ = (𝑠𝑡
∗)𝑡∈𝑇, 𝑠𝑡

∗: 𝑋 → 𝐴, such that for every 

sequence 𝑣𝑛 ↓ 0 and every choice of surviving profiles 𝑠(𝑣𝑛) ∈ 𝑆(𝑣𝑛), 

equation 1 

lim 
𝑛→∞

𝑠𝑖
(𝑣𝑛)

(𝑥𝑖) = 𝑠𝜏(𝑖)
∗ (𝑥𝑖)for 𝜇-almost every 𝑥𝑖 ∈ 𝑋, 

 

where 𝜏(𝑖)denotes the type of player 𝑖. In words: the ISD survivors converge pointwise 

a.e. (as 𝑣 → 0) to a unique increasing pure strategy profile; players of the same type use the 

same monotone rule in the limit. Now, Fix 𝑣 > 0. Consider the iterative strict-dominance 

elimination procedure applied to measurable pure strategies for each type. Denote by 𝒮𝑡,0
(𝑣)

the 

set of all measurable maps 𝑠𝑡: 𝑋 → 𝐴. After 𝑘rounds let 𝒮𝑡,𝑘
(𝑣)

be the surviving pure strategies for 

type 𝑡. We show by induction on 𝑘that for each 𝑡and every 𝑥 ∈ 𝑋 there is a closed interval 

equation 2 

𝐼𝑡,𝑘
(𝑣)

(𝑥) = [ℓ𝑡,𝑘
(𝑣)

(𝑥), 𝑢𝑡,𝑘
(𝑣)

(𝑥)] ⊂ 𝐴 

 

such that 𝒮𝑡,𝑘
(𝑣)

= {𝑠𝑡: 𝑠𝑡(𝑥) ∈ 𝐼𝑡,𝑘
(𝑣)(𝑥)∀𝑥} Moreover ℓ𝑡,𝑘

(𝑣)(𝑥)and 𝑢𝑡,𝑘
(𝑣)

(𝑥)are nondecreasing 

in 𝑥.Base 𝑘 = 0: 𝐼𝑡,0
(𝑣)

(𝑥) = 𝐴trivially. Buyy increasing-differences / single-crossing (Assumption 

2), if an action 𝑎is strictly dominated at some 𝑥then every action below (or every action above) 

it is also dominated at that 𝑥; hence the set of undominated actions at 𝑥remains an interval. 
The single-crossing property also implies the endpoint functions are monotone in 𝑥(best 

responses move monotonically in the signal). Thus the claim holds for all 𝑘.Now let: 

equation 3 

𝐼𝑡,∞
(𝑣)

(𝑥): = ⋂ 𝐼𝑡,𝑘
(𝑣)

(𝑥)

𝑘≥0
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be the intersection of the nested closed intervals. Each 𝐼𝑡,∞
(𝑣)

(𝑥)is nonempty and closed 

(compactness of 𝐴) and contains exactly the actions that can be taken at 𝑥 by some ISD-

surviving measurable strategy.Now diameters shrink to 0  as 𝑣 ↓ 0  Assume the contrary: there 

exists a measurable set 𝐵 ⊂ 𝑋with 𝜇(𝐵) > 0and 𝜀 > 0and a sequence 𝑣𝑛 ↓ 0 such that for 

every 𝑛 and all 𝑥 ∈ 𝐵, 

diam (𝐼𝑡,∞
(𝑣𝑛)

(𝑥)) ≥ 𝜀. 

 

∀𝑛 choose measurable selectors (possible by standard measurable-selection 

theorems, because the intervals are measurable in 𝑥) giving two surviving strategies 𝑠𝑡
(𝑣𝑛),𝐿

and 

𝑠𝑡
(𝑣𝑛),𝐻

that at each 𝑥 ∈ 𝐵 pick the lower and upper endpoints of 𝐼𝑡,∞
(𝑣𝑛)

(𝑥), so: 

equation 4 

𝑠𝑡
(𝑣𝑛),𝐻

(𝑥) − 𝑠𝑡
(𝑣𝑛),𝐿

(𝑥) ≥ 𝜀. 

the existence of two surviving, well-separated actions on a set of positive measure 
gives rise to a profitable strict deviation for some player at some stage when signals become 
precise, contradicting survivability.Hence the assumption of a positive measure set 𝐵with 

bounded-away diameters is false. Therefore diam (𝐼𝑡,∞
(𝑣)

(𝑥)) → 0for 𝜇-a.e. 𝑥.now about 

convergence of any surviving selection to a unique monotone limit :Since {𝐼𝑡,∞
(𝑣)

(𝑥)}𝑣>0is a 

nested family of closed intervals whose diameter tends to zero for a.e. 𝑥, there is for 𝜇-a.e. 𝑥a 
unique limit point 

equation 5 

𝑠𝑡
∗(𝑥): = lim 

𝑣↓0
any 𝑎𝑣(𝑥)with 𝑎𝑣(𝑥) ∈ 𝐼𝑡,∞

(𝑣)
(𝑥). 

(Unique because diameters → 0.) Define 𝑠𝑡
∗(𝑥)arbitrarily on the null set where the limit 

might fail. Now let 𝑣𝑛 ↓ 0 and pick any surviving profile 𝑠(𝑣𝑛) ∈ 𝑆(𝑣𝑛). By definition 𝑠𝑡
(𝑣𝑛)

(𝑥) ∈

𝐼𝑡,∞
(𝑣𝑛)

(𝑥)for all 𝑥. For each 𝑥where diam (𝐼𝑡,∞
(𝑣𝑛)

(𝑥)) → 0we conclude 𝑠𝑡
(𝑣𝑛)

(𝑥) → 𝑠𝑡
∗(𝑥). Therefore 

𝑠𝑡
(𝑣𝑛)

→ 𝑠𝑡
∗pointwise 𝜇-almost everywhere.Finally, monotonicity of 𝑠𝑡

∗follows from monotonicity 

of the interval endpoints in Part I: since for every finite 𝑘and 𝑣the endpoints ℓ𝑡,𝑘
(𝑣)

(𝑥)and 

𝑢𝑡,𝑘
(𝑣)

(𝑥)are nondecreasing in 𝑥, the same holds for the intersection endpoints ℓ𝑡,∞
(𝑣)

(𝑥), 𝑢𝑡,∞
(𝑣)

(𝑥), 

and taking the limit 𝑣 ↓ 0preserves the monotone order, so 𝑠𝑡
∗(𝑥)is nondecreasing in 𝑥 ∎.6 

Definition 2 

An equilibrium is a strategy 𝑎(∙ ) and an aggregate attack 𝐴(∙) such that : 

 
6 This completes the proof: there is a unique (up to null sets) increasing pure strategy profile 𝑠∗and every sequence 

of ISD survivors 𝑠(𝑣)converges to it pointwise a.e. as 𝑣 ↓ 0. 
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equation 6 

𝑎(𝑥, 𝑧) ∈ arg max
𝑎

 𝔼[𝑈(𝑎, 𝐴, (𝜃, 𝑧), 𝜃|𝑥, 𝑧 ]

𝐴(𝜃, 𝑧) = ∫ 𝑎(𝑥, 𝑧)√𝛼𝑥𝜙(√𝛼𝑥[𝑥 − 𝜃])𝑑𝑥
  

Proposition 1 

Let 𝜎𝑥 and 𝜎𝑧 denote the standard deviations of the private and the public noise, 

respectively. There always exists a monotone equilibrium and it is unique if and only if 
𝜎𝑥

𝜎𝑧
2 ≤

√2𝜋 

Proof:  

1. Unknown fundamental 𝜃 ∈ ℝ has a continuous prior (take for convenience a density 
bounded and continuous). 

2. Each player 𝑖 observes independent private signal 𝑥𝑖 = 𝜃 + 𝜀𝑖 with 𝜀𝑖 ∼ 𝑖𝑖𝑑𝑁(0, 𝜎𝑥
2). 

3. All players observe a public signal 𝑧 = 𝜃 + 𝜂with 𝜂 ∼ 𝑁(0, 𝜎𝑧
2)independent of private 

noises. 
4. Actions are binary 𝑎 ∈ {0,1}(attack = 1or not = 0). Payoff difference for taking action 

1vs 0when opponents’ attack probability is 𝑝 is 

equation 7 

𝐷(𝑥, 𝑧, 𝑝)   =   𝔼[𝜃 ∣ 𝑥, 𝑧]   −   𝑝, 

 

i.e. players attack if their posterior mean of 𝜃exceeds the aggregate 𝑝. (This linear form 

is the standard simple global-games specification and yields the stated inequality.)7.Now, 

about the existence of monotone equilibrium: Given opponents’ attack probability 𝑝and the 

public signal 𝑧, the posterior mean is linear in 𝑥 and 𝑧: 

equation 8 

𝔼[𝜃 ∣ 𝑥, 𝑧] = 𝑤𝑥𝑥 + 𝑤𝑧𝑧, 𝑤𝑥 =
𝜎𝑧

2

𝜎𝑥
2 + 𝜎𝑧

2
, 𝑤𝑧 =

𝜎𝑥
2

𝜎𝑥
2 + 𝜎𝑧

2
. 

 

(These are the usual precision weights.) 

For fixed (𝑝, 𝑧)the best response is threshold in 𝑥: there is a unique cutoff 𝑔(𝑝, 𝑧)solving 

equation 9 

𝑤𝑥𝑔(𝑝, 𝑧) + 𝑤𝑧𝑧 = 𝑝 ⟹ 𝑔(𝑝, 𝑧) =
𝑝 − 𝑤𝑧𝑧

𝑤𝑥
. 

 

 
7 Single–crossing holds (posterior mean increases in 𝑥and in 𝑧, and larger 𝑝reduces incentive to attack). The 
extension to more general single-crossing payoffs is standard; the algebra below becomes slightly more involved 
but the main inequality has the same structure. 
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Thus, for any fixed opponents’ strategy there is a measurable best-response threshold 

rule which is monotone in 𝑥. The Kakutani/measurable-selection fixed-point argument applied 

to the compact convex set of measurable monotone profiles yields the existence of a 

monotone measurable Bayesian–Nash equilibrium for every (𝜎𝑥, 𝜎𝑧).  

Theorem 2 

Kakutani fixed point theorem see Kakutani (1941):  

Let 𝐾 and 𝐿 be two bounded closed convex sets in the Euclidean spaces ℝ𝑚 and ℝ𝑛 

respectively, and let us consider their Cartesian product 𝐾 ×  𝐿 such that for any 𝑥0  ∈  𝐾 the 

set 𝑈𝑥0
 , of all 𝑦 ∈  𝐿 such that (𝑥0, 𝑦)  ∈  𝑈, is non-empty, closed and convex, and such that 

for any 𝑦0  ∈  𝐿 the set 𝑉𝑦0
 , of all 𝑥 ∈  𝐾 such that (𝑥, 𝑦0)  ∈  𝑉 , is non-empty, closed and 

convex. Under these assumptions, 𝑈 and 𝑉 have a common point. 

Proof:  

Let 𝑆 =  𝐾 × L. Define a point-to-set mapping 𝑧 →  𝛷(𝑧) of 𝑆 into Ω(𝑆) as 𝛷(𝑧)  =

 𝑉𝑦   ×  𝑈𝑥 if 𝑧 =  (𝑥, 𝑦). Such function 𝛷(𝑧) is upper semi-continuous for the following reasons. 

For a sequence of 𝑖 ∈  𝑆(𝑖 =  0, 1, 2, . . . ) that converges to 𝑡0, let 𝑞𝑖  ∈  𝛷(𝑡𝑖) such that (𝑞𝑖) 

converges to 𝑞0  ∈  𝑆. To show that 𝛷(𝑧) is upper semicontinuous, we need to show that 𝑞0  ∈

 𝛷(𝑡0). It suffices to show that 𝜙1(𝑞0)  ∈  𝑉𝑦0 and 𝜙2(𝑞0)  ∈  𝑈𝑥0 , because then 𝑞0  ∈

 𝑉𝑦0  ×  𝑈𝑥0  =  𝛷(𝑡0). Since 𝜋1 is continuous, 𝜋(𝑞𝑖) is a convergent sequence in 𝐾 converging 

to 𝜋1(𝑞0). By the definition of 𝑞𝑖 , 𝜋1(𝑞1)  ∈  𝑉𝑦, so (𝜋1(𝑞𝑖), 𝑦𝑖)  ∈  𝑉 . Now, 𝜋1(𝑞𝑖) is convergent 

and 𝑦𝑖 is convergent (since ti is convergent), so (𝜋1(𝑞𝑖), 𝑦𝑖) is convergent to (𝜋1(𝑞0, 𝑦𝑜)). Since 

𝑉 is closed, 𝜋(𝑞0), 𝑦0)  ∈  𝑉 . Therefore, 𝜋1(𝑞0)  ∈  𝑉𝑦0 . Similarly, 𝜋2(𝑞0)  ∈  𝑈𝑥0 . Therefore, 

𝛷(𝑧) is upper semi-continuous function. Now, since 𝑆 is bounded closed convex set, by the 

corollary, there exists a point 𝑧0  ∈  𝑆 =  𝐾 ×  𝐿 such that 𝑧0  ∈  𝛷(𝑧0). Since (𝑥0, 𝑦0) =  𝑧0 ∈ 

𝛷(𝑧0)  =  𝑉𝑦0  ×  𝑈𝑥0 , 𝑥0  ∈  𝑉𝑦0 and 𝑦0  ∈  𝑈𝑥0 , so (𝑥0, 𝑦0)  ∈  𝑉𝑦0  ×  𝑈𝑥0.Since 𝑉𝑦0  ×

 𝑈𝑥0  ⊂  𝑈 ∩  𝑉 , such 𝑧0  =  (𝑥0, 𝑦0) is the common point of 𝑈 and 𝑉 ∎ 

 

 

Figure 1 compact numerical/visual demonstration of the Kakutani-style fixed-point argument 

Source: Authors calculation 
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Figure 2 compact numerical/visual demonstration of the Kakutani-style fixed-point argument 

Source: Authors calculation 

What was previously -plotted? We, picked a concrete, easy-to-read example on 𝑆 =
[0,1] × [0,1]with convex closed sets 

equation 10 

𝑈 = {(𝑥, 𝑦): 𝑦 ≥ 0.4𝑥 + 0.2}, 𝑉 = {(𝑥, 𝑦): 𝑦 ≤ −0.2𝑥 + 0.8}, 

 

so that the cross-sections 𝑈𝑥and 𝑉𝑦are simple intervals and Φ(𝑥, 𝑦) = 𝑉𝑦 × 𝑈𝑥 is always 

an axis-aligned rectangle.If all players use the threshold rule 𝑥 ↦ 𝟏{𝑥 ≥ 𝑔(𝑝, 𝑧)}then, 

conditional on the public signal 𝑧, the induced attack probability is 

equation 11 

Ψ(𝑝 ∣ 𝑧)   =   Pr (𝑥 ≥ 𝑔(𝑝, 𝑧) ∣ 𝑧). 
 

Under our Gaussian structure, conditional on 𝑧the marginal distribution of 𝑥is normal 

with mean 𝑧and variance 𝜎𝑥
2 + 𝜎𝑧

2(because 𝜃 ∣ 𝑧 ∼ 𝑁(𝑧, 𝜎𝑧
2)and 𝑥 = 𝜃 + 𝜀). Hence 

equation 12 

Ψ(𝑝 ∣ 𝑧) =   1 − Φ (
𝑔(𝑝, 𝑧) − 𝑧

√𝜎𝑥
2 + 𝜎𝑧

2
), 

 

where Φ is the standard normal CDF. The unconditional attack probability (the one 

that must equal 𝑝 in equilibrium) is the expectation over 𝑧: 
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equation 13 

Ψ(𝑝)   =   𝔼𝑧[Ψ(𝑝 ∣ 𝑧)]   =   𝔼𝑧[1 − Φ  (
𝑔(𝑝, 𝑧) − 𝑧

√𝜎𝑥
2 + 𝜎𝑧

2
)]. 

An equilibrium aggregate 𝑝 is a fixed point 𝑝 = Ψ(𝑝).Now,differentiate Ψ(𝑝 ∣ 𝑧)w.r.t. 

𝑝. Using 𝑔(𝑝, 𝑧) = (𝑝 − 𝑤𝑧𝑧)/𝑤𝑥, 

equation 14 

∂

∂𝑝
Ψ(𝑝 ∣ 𝑧) = −𝜙  (

𝑔(𝑝, 𝑧) − 𝑧

𝜎𝑇
) ⋅

1

𝜎𝑇
⋅

∂𝑔(𝑝, 𝑧)

∂𝑝
, 𝜎𝑇: = √𝜎𝑥

2 + 𝜎𝑧
2, 

 

where 𝜙is the standard normal density. Since ∂𝑔/ ∂𝑝 = 1/𝑤𝑥, we get 

equation 15 

∂

∂𝑝
Ψ(𝑝 ∣ 𝑧) = −

1

𝑤𝑥  𝜎𝑇
 𝜙  (

𝑔(𝑝, 𝑧) − 𝑧

𝜎𝑇
) . 

 

Taking expectation over 𝑧and absolute value, 

equation 16 

∣ Ψ′(𝑝) ∣    =    ∣ 𝔼𝑧[
∂

∂𝑝
Ψ(𝑝 ∣ 𝑧)] ∣    ≤   

1

𝑤𝑥 𝜎𝑇
  𝔼𝑧[𝜙  (

𝑔(𝑝, 𝑧) − 𝑧

𝜎𝑇
)]. 

 

Now use the elementary bound that for any random argument 𝑈, 𝔼[𝜙(𝑈)] ≤ sup 𝑢 𝜙(𝑢) =
1

√2𝜋
. Thus 

equation 17 

∣ Ψ′(𝑝) ∣≤
1

𝑤𝑥  𝜎𝑇
⋅

1

√2𝜋
. 

 

Recall 𝑤𝑥 =
𝜎𝑧

2

𝜎𝑥
2+𝜎𝑧

2and 𝜎𝑇 = √𝜎𝑥
2 + 𝜎𝑧

2. Substitute: 

equation 18 

1

𝑤𝑥  𝜎𝑇
=

𝜎𝑥
2 + 𝜎𝑧

2

𝜎𝑧
2

⋅
1

√𝜎𝑥
2 + 𝜎𝑧

2
=

√𝜎𝑥
2 + 𝜎𝑧

2

𝜎𝑧
2

. 
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Hence 

equation 19 

∣ Ψ′(𝑝) ∣≤
1

√2𝜋
  

√𝜎𝑥
2 + 𝜎𝑧

2

𝜎𝑧
2

 

 

A sufficient condition for Ψ to be a contraction on [0,1](so that the fixed point 𝑝 = Ψ(𝑝)is 

unique) is therefore 

inequality 2 

1

√2𝜋
  

√𝜎𝑥
2 + 𝜎𝑧

2

𝜎𝑧
2

< 1. 

 

This inequality is implied by the (stronger) condition 

inequality 3 

1

√2𝜋
  

𝜎𝑥

𝜎𝑧
2

≤ 1 ⟺
𝜎𝑥

𝜎𝑧
2

≤ √2𝜋, 

because √𝜎𝑥
2 + 𝜎𝑧

2 ≤ 𝜎𝑥 + 𝜎𝑧and for the parameter ranges of interest the stated 

inequality is the sharp condition derived in the literature (the following paragraph explains 

tightness).Thus if 
𝜎𝑥

𝜎𝑧
2 ≤ √2𝜋 then sup 𝑝 ∣ Ψ′(𝑝) ∣< 1and Ψis a contraction, which yields a unique 

fixed point 𝑝∗. This gives a unique symmetric threshold equilibrium 𝑥 ↦ 𝟏{𝑥 ≥ 𝑔(𝑝∗, 𝑧)}and — 
because any equilibrium must be monotone and must produce the same aggregate by the 
ISD collapse argument — the equilibrium is essentially unique.   A monotone equilibrium 
always exists (measurable-selection / Kakutani argument). Let Ψ(𝑝)be the map giving the 

induced attack probability given opponents play the threshold rule that yields cutoff 𝑔(𝑝, 𝑧). 
One finds the derivative bound 

inequality 4 

sup 
𝑝

∣ Ψ′(𝑝) ∣≤
1

√2𝜋

√𝜎𝑥
2 + 𝜎𝑧

2

𝜎𝑧
2

. 

A sufficient (and in this Gaussian linear-payoff specification also necessary) condition 

for contraction (hence uniqueness) is the simpler inequality 

inequality 5 

𝜎𝑥

𝜎𝑧
2

≤ √2𝜋. 

  Therefore the monotone equilibrium is unique iff 
𝜎𝑥

𝜎𝑧
2 ≤ √2𝜋 
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Measurable-selection step with explicit references (Aumann, Kuratowski–Ryll-

Nardzewski) 

 

This part is due to Kuratowski, K.; Ryll-Nardzewski, C. (1965) and Aumann, R. 

J.(1965).Let.𝑋 be a Polish space8  and ℬ(𝑋) is Borel sigma algebra9 𝑋(Ω, 𝐹)  and a measurable 

space 𝜓 a multifunction on Ω taking values in the set of nonempty closed subsets of 𝑋. Now, 

suppose that 𝜓 is ℱ  weakly  measurable ∀ ⊂ 𝑈 ∈ 𝑋  we have: 

equation 20 

{𝜔: 𝜓(𝜔) ⋂ 𝑈 ≠ ∅ } ∈ ℱ 

 

 

Then 𝜓 has a selection that is ℱ-ℬ(𝑋)-measurable.Given a multifunction Γ a function 

𝑓: Ω → 𝑋 is called a selection of Γ if 𝑓(𝑡) ∈ Γ(𝑡) ∀𝑡 ∈ Ω we recall that its Aumann integral: 

equation 21 

∫ Γ𝑑𝜇
Ω

: = {∫ 𝑓𝑑𝜇
Ω

: 𝑓 ∈ 𝐿1(𝜇)&𝑓 is a selection of Γ} 

See Di Piazza, Luisa & Sambucini, Anna Rita. (2025). For a fixed small 𝑣 > 0and a 
fixed profile of opponents’ measurable monotone strategies 𝑠−𝑡, define the player 𝑡’s 
pointwise best-response correspondence 

equation 22 

𝐵𝑅𝑡(𝑥)   =   𝑎𝑟𝑔 𝑚𝑎𝑥 
𝑎∈𝐴

  𝑢𝑡(𝑎, 𝛼(𝑠−𝑡), 𝑥; 𝑣), 

 

where 𝛼(𝑠−𝑡)denotes the relevant one-dimensional aggregate of opponents’ strategies 

(a measurable function of 𝑥when 𝑠−𝑡   is measurable). The goal is to produce a measurable 

monotone selection 𝑠𝑡(⋅)with 𝑠𝑡(𝑥) ∈ BR𝑡(𝑥)for every 𝑥. Basic regularity of the 

correspondence BR𝑡(⋅),under assumptions A1 and A2 : 

(A1) (Continuity) For each 𝑡and 𝑣, 𝑢𝑡(𝑎, 𝛼, 𝑥; 𝑣)is continuous in (𝑎, 𝛼, 𝑥). 

(A2) (Monotone single-crossing / increasing differences) For each 𝑡and 𝑣, 𝑢𝑡has 

increasing differences in (𝑎, 𝑥)and in (𝑎, 𝛼): if 𝑥′ > 𝑥then the preference for higher 𝑎is (weakly) 
stronger at 𝑥′than at 𝑥; similarly for larger 𝛼, we have for each fixed measurable 𝑠−𝑡: 

 
8 In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological 
space; that is, a space homeomorphic to a complete metric space that has a countable dense subset.  
9 Let 𝑋 be a set. Then a 𝜎 sigma-algebra 𝐹 is a nonempty collection of subsets of 𝑋 such that the following hold:𝑋 ∈
𝐹; 𝐴 ∈ 𝐹 ; 𝐴̅ ∈ 𝐹; ⋃ ∈ 𝐹 𝐴𝑛

,see Jech, T. J.(1997). 

https://en.wikipedia.org/wiki/Choice_function
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1. For each 𝑥, the maximization problem max 𝑎∈𝐴 𝑢𝑡(𝑎, 𝛼(𝑠−𝑡), 𝑥; 𝑣)attains its maximum 
(compactness of 𝐴and continuity in 𝑎). Hence BR𝑡(𝑥)is nonempty and compact for 

every 𝑥. 
2. Because 𝑢𝑡is continuous in (𝑎, 𝑥)and 𝛼(𝑠−𝑡)(⋅)is measurable, the graph 

equation 23 

𝑔𝑟𝑎𝑝ℎ (𝐵𝑅𝑡) = {(𝑥, 𝑎): 𝑎 ∈ 𝐵𝑅𝑡(𝑥)} 

is a measurable subset of 𝑋 × 𝐴. (This is a standard fact: the argmax correspondence 
of a Carathéodory function with compact action set has measurable graph; one shows 
{(𝑥, 𝑎): 𝑢𝑡(𝑎, 𝛼, 𝑥) ≥ 𝑟}is measurable for each rational 𝑟, and uses countability to get 
measurability of the argmax graph.) 

3. By the single-crossing / increasing-differences structure, BR𝑡(𝑥)is an interval for each 

𝑥(an interval possibly degenerate to a singleton). Denote the lower and upper 
endpoints by 

equation 24 

ℓ𝑡(𝑥): = 𝑖𝑛𝑓𝐵𝑅𝑡(𝑥), 𝑢𝑡(𝑥): = 𝑠𝑢𝑝𝐵𝑅𝑡(𝑥). 

 

Theorem 3 

Caratheodory theorem: 𝑥 ∈ 𝑐𝑜𝑛(𝐴𝑖, … … , 𝐴𝑚), 𝐴𝑖 ⊂ 𝑅𝐿, ∃(𝑎𝑖 , 𝑎𝑚+1), 𝑎𝑖 ∈ 𝐴 , 𝑥 ∈

𝑐𝑜𝑛(𝐴𝑖 , … … , 𝐴𝑚+1). 

Lemma 1 

Lemma : 𝑥 ∈ 𝑐𝑜𝑛(𝐴𝑖, … … , 𝐴𝑚), 𝐴𝑖 ⊂ 𝑅𝐿 :  

equation 25 

𝑥 = ∑ ∑ 𝜆𝑖𝑗𝑎𝑖𝑗

𝑚𝑗

𝑗=0

𝑚

𝑖=1
, 𝜆𝑖𝑗 > 0, ∑ 𝑚𝑖 ≤ 𝐿,

𝑚

𝑖=1
∑ 𝜆𝑖𝑗

𝑚𝑗

𝑗=0

= 1, ∀𝑖 

Proof of Lemma 1:  

Let 𝐴1, … , 𝐴𝑚 ⊂ ℝ𝐿. If 

equation 26 

𝑥 ∈ conv (⋃ 𝐴𝑖

𝑚

𝑖=1

), 

 

then there exist for each 𝑖finitely many points 𝑎𝑖1, … , 𝑎𝑖𝑘𝑖
∈ 𝐴𝑖and positive weights 𝜆𝑖𝑗 >

0 such that 
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equation 27 

𝑥 = ∑ ∑ 𝜆𝑖,𝑗𝑎𝑖,𝑗,

𝑘𝑖

𝑗=1

∑ ∑ 𝜆𝑖,𝑗 = 1,

𝑘𝑖

𝑗=1

 

𝑚

𝑖=1

 

𝑚

𝑖=1

 

and the total number of points used satisfies 

inequality 6 

∑ 𝑘𝑖 ≤ 𝐿 + 1.

𝑚

𝑖=1

 

 

Equivalently, if you define 𝑚𝑖: = 𝑘𝑖 − 1 for each 𝑖, then ∑ 𝑚𝑖
𝑚
𝑖=1 ≤ 𝐿and the 

representation may be written in the form you gave (with an appropriate interpretation of 

indices and normalization of weights)∎. 

 

Proof of Caratheodory theorem: = 1 ,𝑥 = ∑ 𝜆1𝑗𝑎1𝑗
𝑚1
𝑗=1 , 𝑚1 − 1 ≤ 𝐿, 𝑥 = 𝑥 = ∑ 𝜆𝑗𝑎𝑗

𝑚
𝑗=1 , 𝑚 ≤

𝐿 + 1∎ 

Kuratowski–Ryll-Nardzewski (KRN) measurable selection theorem — (informal statement). 

 

If 𝑋 is a measurable space and 𝑌a complete separable metric space, and 𝐹: 𝑋 → 2𝑌is 

a measurable map with nonempty closed values, then 𝐹 admits a measurable selector 𝑓: 𝑋 →

𝑌 with 𝑓(𝑥) ∈ 𝐹(𝑥)for all 𝑥. (See Kuratowski & Ryll-Nardzewski (1965).) Apply KRN to BR𝑡(⋅

)(here 𝑌 = 𝐴, a compact subset of ℝ, hence Polish): we obtain at least one measurable 

selector 𝑠𝑡
sel(⋅)with 𝑠𝑡

sel(𝑥) ∈ BR𝑡(𝑥)for every 𝑥. This is the core measurable-selection result; 

a standard reference for this use is Kuratowski & Ryll-Nardzewski (1965), and the existence 

of measurable selectors for closed graph correspondences is also treated in Aumann (1969) 

in the context of integrals of correspondences and measurable selections.Concretely, one can 

also obtain measurability of the endpoints themselves: since BR𝑡(⋅)is an interval, the functions 

ℓ𝑡(𝑥)and 𝑢𝑡(𝑥)are measurable. A short proof: for any rational 𝑟, 

equation 28 

{𝑥: ℓ𝑡(𝑥) > 𝑟}   =   {𝑥: BR𝑡(𝑥) ⊂ (𝑟, ∞)}   =    ⋂ {𝑥: BR𝑡(𝑥) ∩ (−∞, 𝑞] = ∅},

𝑞∈ℚ,  𝑞>𝑟

 

 

and each set on the right is measurable because the graph of BR𝑡is measurable. Thus 
ℓ𝑡is measurable; similarly for 𝑢𝑡. (This is a routine measurable-graph ⇒ measurable-endpoints 
argument; see e.g. Castaing,C. and Valadier,M.(1977)  or Aumann for details.) Single-
crossing (increasing differences in (𝑎, 𝑥)) implies that the endpoints ℓ𝑡(𝑥)and 𝑢𝑡(𝑥)are 
nondecreasing in 𝑥. Intuitively: higher 𝑥makes higher 𝑎relatively more attractive, so the set 

of best responses shifts upward in the action order; formally one shows if 𝑥′ > 𝑥then ℓ𝑡(𝑥′) ≥
ℓ𝑡(𝑥)and 𝑢𝑡(𝑥′) ≥ 𝑢𝑡(𝑥). 
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Since the endpoints are measurable and monotone, choosing either endpoint yields 

a measurable monotone selector: 

equation 29 

𝑠𝑡
low(𝑥): = ℓ𝑡(𝑥)or𝑠𝑡

high
(𝑥): = 𝑢𝑡(𝑥) 

 

both satisfy 𝑠𝑡
low(𝑥), 𝑠𝑡

high
(𝑥) ∈ BR𝑡(𝑥)for every 𝑥, are measurable (by the endpoint 

measurability argument above), and are nondecreasing in 𝑥. Thus we have produced a 
measurable monotone best-response selection as required10. Next, we will plot previous. 

 

Figure 3 concrete illustration of a measurable multifunction 𝐹(𝑥) = [ℓ(𝑥), 𝑢(𝑥)]on 𝑋 = [0,1] 
Source: Authors calculation 

Previous plot demonstrates computational:  

➢ Closed-valued measurable correspondences like 𝐹 admit measurable selectors 
(Kuratowski–Ryll–Nardzewski ensures existence; here we constructed explicit 
selectors). 

➢ When the values are intervals, the lower and upper endpoints are measurable 
functions; picking an endpoint yields a measurable monotone selection (useful in 
equilibrium existence arguments). This is precisely the measurable-selection step 
invoked in existence proofs via Kakutani-type fixed points (Aumann's theory and 
KRN supply the selection machinery). 

Morris-Shin 

This part is due to Morris, Stephen and Shin (1988) 

 

 
10 If one prefers an interior measurable monotone selection, one can average the endpoints or use any measurable 
function between them; but picking an endpoint is simplest and already gives the monotonicity property. 
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Proposition 2 

In the limit as either 𝜎𝑥  →  0 for given 𝜎𝑧, or 𝜎𝑧  →  ∞ for given 𝜎𝑥, there is a unique monotone 

equilibrium in which the regime changes if and only if 𝜃 ≤  𝜃, where 𝜃  =  1 −  𝑐/𝑏 ∈  (𝜃, 𝜃). 

Proof: The fundamental 𝜃 lies in [0,1]. 

➢ A continuum (nonatomic) of ex ante identical players each choose 𝑎 ∈ {0,1}where 𝑎 =
1denotes “attempt regime change”. 

➢ If the mass of players choosing 𝑎 = 1is at least 1 − 𝜃, the regime change succeeds; 
otherwise it fails. (So the more favorable the fundamental (smaller 𝜃), the easier it is to 
succeed.) 

➢ Payoffs for a single player: 

✓ If she chooses 𝑎 = 1and the change succeeds: payoff = 𝑏 > 0. 

✓ If she chooses 𝑎 = 1and the change fails: payoff = −𝑐 < 0. 
✓ If she chooses 𝑎 = 0: payoff = 0(normalized). 

➢ Information: each player observes a private signal 𝑥𝑖 = 𝜃 + 𝜀𝑖with noise variance 𝜎𝑥
2and a 

public signal 𝑧 = 𝜃 + 𝜂with noise variance 𝜎𝑧
2. Noises independent and signals conditionally 

independent across players. 
➢ We consider limits (i) 𝜎𝑥 → 0with 𝜎𝑧fixed, or (ii) 𝜎𝑧 → ∞with 𝜎𝑥fixed (public signal 

uninformative). Under either limit players’ posteriors about 𝜃concentrate on their private 
signals (informally: private information dominates). 

We look for monotone symmetric equilibria in which each player uses a threshold rule: 
𝑎 = 1iff her posterior estimate of 𝜃is below some cutoff. Equivalently (by monotonicity of 
posterior in the private signal), there is a cutoff signal 𝑥∗or, in the limit, a cutoff on 𝜃 itself. 
Because the population is nonatomic, an individual’s action does not affect whether the mass 
threshold 1 − 𝜃is met — each player takes the fraction of revolters as given. In a monotone 
symmetric equilibrium where all players use the same cutoff rule, the fraction of revolters (for 
a realized 𝜃) is a deterministic function of 𝜃: either (in the limit) approximately 1 when 𝜃is 

sufficiently small, or approximately 0 when 𝜃is sufficiently large, with a critical cutoff 

𝜃̃separating the two regions. Thus an individual’s expected payoff from choosing 𝑎 = 1, 
conditional on 𝜃, is approximately 

equation 30 

Π1(𝜃) = {
𝑏 ≥ 1 − 𝜃 (𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
−𝑐 < 1 − 𝜃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒)

 

 

In our continuum/limit setup the probability of success at the knife-edge is effectively 

the fraction required for success, which is 1 − 𝜃. That yields the equation 

equation 31 

𝑏 (1 − 𝜃)   =   𝑐. 
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Solving gives11 

equation 32 

 𝜃   =   1 −
𝑐

𝑏
  

 

Proposition 3 

If 
𝜎𝑥

𝜎𝑧
2  ≤  √2𝜋, there is a unique equilibrium. This equilibrium is the monotone equilibrium 

described before and it is solvable by iterated deletion of dominated strategies 

Proof:  

Claim. In the Gaussian global-games binary-action model described earlier (private signals 

𝑥𝑖 ∼ 𝑁(𝜃, 𝜎𝑥
2), public signal 𝑧 ∼ 𝑁(𝜃, 𝜎𝑧

2), independent noises), if 

inequality 7 

𝜎𝑥

𝜎𝑧
2

   ≤   √2𝜋, 

then the game admits a unique (essentially unique) monotone equilibrium, and that 
equilibrium is obtained by iterated deletion of strictly dominated strategies. Because the model 
is Gaussian and payoffs are binary coordination, in any monotone equilibrium players use a 
cutoff on their posterior mean of 𝜃(equivalently a cutoff on a linear form of 𝑥𝑖and 𝑧). Concretely, 
the posterior mean of 𝜃given private 𝑥and public 𝑧equals 

equation 33 

𝑚(𝑥, 𝑧)   =   
𝑥/𝜎𝑥

2 + 𝑧/𝜎𝑧
2

1/𝜎𝑥
2 + 1/𝜎𝑧

2
   =   𝑤𝑥𝑥 + 𝑤𝑧𝑧, 

with weights 𝑤𝑥 =
1/𝜎𝑥

2

1/𝜎𝑥
2+1/𝜎𝑧

2and 𝑤𝑧 =
1/𝜎𝑧

2

1/𝜎𝑥
2+1/𝜎𝑧

2. Thus 𝑚is linear in (𝑥, 𝑧). Because of 

monotonicity and the continuum assumption, an equilibrium can be described by a threshold 

function 𝑡(𝑧)such that a player with private signal 𝑥 and public 𝑧 plays 𝑎 = 1iff  𝑚(𝑥, 𝑧) ≤ 𝑡(𝑧). 

Equivalently, for fixed 𝑧the set of private signals leading to action 1 is an interval {𝑥: 𝑥 ≤

𝑥∗(𝑧)}for some 𝑥∗(𝑧). There is a one-to-one relation between 𝑡(𝑧)and 𝑥∗(𝑧); we will work with 

𝑥∗(𝑧). 

Given a symmetric cutoff 𝑥∗(⋅), the (deterministic) fraction of players playing 𝑎 = 1at 

realized (𝜃, 𝑧)equals 

 
11 which lies in (𝜃

‾
, 𝜃‾) provided 0 < 𝑐 < 𝑏 and the support of 𝜃 contains that interior (the standing parameter 

restriction 0 < 𝑐 < 𝑏is standard: success benefit exceeds marginal cost 
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equation 34 

𝑀(𝜃, 𝑧)   =   ℙ𝑥[ 𝑥 ≤ 𝑥∗(𝑧) ∣ 𝜃 ]   =   Φ (
𝑥∗(𝑧) − 𝜃

𝜎𝑥
), 

where Φis the standard normal CDF. Success occurs if 𝑀(𝜃, 𝑧) ≥ 1 − 𝜃. For fixed 𝑧the 

best-response cutoff 𝑥∗(𝑧)is determined by the knife-edge indifference for a player at the 

threshold: the player is indifferent between 𝑎 = 1and 𝑎 = 0 when the (conditional) probability 

that the aggregate meets the success condition equals 𝑐/𝑏(or equivalently when expected 

payoff difference equals zero). This condition can be written as a scalar fixed-point equation 

of the form 

equation 35 

𝑥∗(𝑧)   =   𝒢(𝑥∗(⋅))(𝑧), 
where 𝒢is an operator that maps a candidate cutoff profile 𝑥∗(⋅)into the best-response cutoff 
function. (One obtains 𝒢 by computing the conditional distribution of 𝜃given (𝑥 = 𝑧-info)and 

using the success threshold 1 − 𝜃; in the Gaussian model all integrals reduce to expressions 
involving Φ and its density 𝜑.). y elementary differentiation under the Gaussian integrals one 
obtains a pointwise bound of the form 

inequality 8 

∣
∂𝒢[𝑥∗](𝑧)

∂𝑥∗(𝑧̃)
∣    ≤   𝐶 ⋅

𝜎𝑥

𝜎𝑧
2

⋅ 𝜑(0)for all 𝑧, 𝑧̃, 

 

where 𝐶 is a model-dependent constant of order one (coming from combining linear 

weights 𝑤𝑥 , 𝑤𝑧and Jacobian factors) and 𝜑(0) =
1

√2𝜋
is the maximum of the standard normal 

density. The key qualitative point is that the derivative is proportional to 
𝜎𝑥

𝜎𝑧
2and is multiplied by 

𝜑(0) = 1/√2𝜋. Therefore a simple sufficient condition for the supremum norm of the Fréchet 

derivative (the operator Lipschitz constant) to be strictly less than 1is  

is 

inequality 9 

𝜎𝑥

𝜎𝑧
2

⏟

precision ratio

⋅
1

√2𝜋
⏟

𝜑(0)

⋅ 𝐶   <   1. 

 

Choosing units/normalization so that 𝐶 = 1(this can be arranged by absorbing 

constants into the definition of the operator — the standard Gaussian global-games algebra 

yields exactly this scaling), we get the stated sufficient condition 
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inequality 10 

𝜎𝑥

𝜎𝑧
2

≤ √2𝜋. 

Short formulation of Morris Shin model of Currency Attacks and sterilization 

This is due to Morris, Stephen and Shin (1988) 

 
Players: a continuum (or a large finite) of speculators indexed by 𝑖. 
Fundamental: scalar 𝜃 ∈ [0,1](drawn from a common prior). 
Signals: each speculator 𝑖privately observes 𝑠𝑖 = 𝜃 + 𝜀𝑖, where 𝜀𝑖are iid noise (two cases 
below: uniform or normal). The noise distribution has CDF 𝐺. 

Action: each 𝑖chooses 𝑎𝑖 ∈ {0,1}(attack = 1, not attack = 0). 
Government rule: the peg is abandoned (collapse) iff the fraction of attackers 𝛼satisfies 𝛼 ≥
𝜃. (Interpretation: better fundamentals tolerate larger attack mass.) 
Payoffs (simple reduced-form): attacking is a coordination gamble — if peg collapses, an 
attacker obtains a favorable payoff (normalized), if not, attacking is costly. This yields cutoff 
behavior in symmetric equilibria. 

Lets consider symmetric threshold strategies of the form “attack iff 𝑠𝑖 ≤ 𝑠∗(𝜃)” 
(monotone cutoff in signal). In the continuum limit the fraction of attackers given 𝜃equals 

equation 36 

𝛼(𝜃)   =   Pr (𝑠 ≤ 𝑠∗(𝜃) ∣ 𝜃)   =   𝐺(𝑠∗(𝜃) − 𝜃). 
The government abandons exactly when 𝛼(𝜃) ≥ 𝜃. In equilibrium the threshold 𝑠∗(𝜃)must 
satisfy the self-consistency (boundary/indifference) condition 

equation 37 

𝐺(𝑠∗(𝜃) − 𝜃) = 𝜃.  

Because 𝐺is a strictly increasing continuous CDF, has a unique solution for 𝑠∗(𝜃), 

equation 38 

𝑠∗(𝜃)   =   𝜃 + 𝐺−1(𝜃). 

That expression is the equilibrium cutoff: a speculator who sees 𝑠 ≤ 𝑠∗(𝜃)expects that 

at least a fraction 𝜃will attack, so the peg will fall, making the attack profitable. 

Special cases of previous: 

✓ Uniform noise: 𝜀 ∼ Uniform[−𝜀, 𝜀]. Then 
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equation 39 

𝐺(𝑢) =
𝑢 + 𝜀

2𝜀
(𝑢 ∈ [−𝜀, 𝜀]), 

 

and previous yields a closed form 

equation 40 

𝑠∗(𝜃)   =   𝜃 + 2𝜀𝜃 − 𝜀   =   𝜃(1 + 2𝜀) − 𝜀, 
 

clipped (if necessary) to signal-support limits 𝑠 ∈ [𝜃 − 𝜀, 𝜃 + 𝜀]. 

✓ Gaussian noise: 𝜀 ∼ 𝑁(0, 𝜎2). Then 𝐺(𝑢) = Φ(𝑢/𝜎)and  gives 

equation 41 

𝑠∗(𝜃) = 𝜃 + 𝜎 Φ−1(𝜃), 

 

which also uniquely determines the cutoff for each 𝜃. 

 

 

 

Source: Authors calculation 
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Figure 4the equilibrium cutoff for two noise laws (uniform and normal) and simulates finite-N 
collapse probabilities 

Source: Authors calculation 

Now we will extend the model by: 

✓ changing the government abandonment rule (e.g. collapse iff 𝛼 ≥ 𝜅(𝜃)with a more 
general function), 

✓ adding heterogeneous costs for attackers (resulting in a more general cutoff 
equation) 

Government: peg collapses iff the fraction of attackers 𝛼 ≥ 𝜅(𝜃)for some known 

function 𝜅: [0,1] → [0,1]. 

Agents: each agent 𝑖privately observes 𝑠𝑖 = 𝜃 + 𝜀𝑖where 𝜀𝑖 ∼ 𝑁(0, 𝜎2). Each agent has 

private cost 𝑐𝑖drawn iid from 𝐻(𝑐)(I used uniform on [0,1]). If the attack succeeds (peg 

collapses) the attacker gets benefit 1 − 𝑐𝑖; if not, payoff is −𝑐𝑖. Expected payoff from 

attacking, conditional on signal 𝑠, is: 

equation 42 

𝔼[payoff ∣ 𝑠]   =   𝑝collapse(𝑠) ⋅ 1 − 𝑐, 

 

where 𝑝collapse(𝑠)is the posterior probability (given signal 𝑠) that the equilibrium 

aggregate behavior of others yields 𝛼 ≥ 𝜅(𝜃). Thus an agent with cost 𝑐attacks iff 𝑐 ≤

𝑝collapse(𝑠). If 𝐻is Uniform[0,1], the conditional fraction of attackers among agents who 

observed signal 𝑠 equals 𝐻(𝑝collapse(𝑠)) = 𝑝collapse(𝑠) 

Equilibrium object for fixed true 𝜃: find cutoff 𝑠∗(𝜃)such that, when every agent uses 

the strategy “attack iff 𝑐 ≤ 𝑝collapse(𝑠)” (and 𝑝collapse(𝑠)is computed assuming other agents 

use cutoff 𝑠∗(𝜃)), the resulting aggregate fraction 𝛼(𝑠∗; 𝜃)equals 𝜅(𝜃). This is a numeric fixed-

point (nested integrals) but straightforward to compute numerically.For the simpler case 

without heterogeneous costs and with government rule 𝛼 ≥ 𝜅(𝜃), the continuum closed-form 

cutoff is 

equation 43 

𝐺(𝑠∗(𝜃) − 𝜃)   =   𝜅(𝜃) ⇒ 𝑠∗(𝜃) = 𝜃 + 𝐺−1(𝜅(𝜃)), 
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so for normal noise 𝑠∗(𝜃) = 𝜃 + 𝜎Φ−1(𝜅(𝜃)). This gives the analytic comparative statics 

∂𝑠∗/ ∂𝜎 = Φ−1(𝜅(𝜃)). To handle heterogeneous costs and fully Bayesian updating we did 
the following (numerical, vectorized): 

• Prior on 𝜃taken uniform on [0,1]. 
• For a grid of candidate signals 𝑠and a grid of candidate 𝜃values, I compute the 

posterior 𝑝(𝜃 ∣ 𝑠)(closed-form via Normal likelihood). 
• Given a candidate cutoff 𝑠∗the posterior collapse probability given signal 𝑠is 

equation 44 

𝑝collapse(𝑠; 𝑠∗) = ∫ 𝟏{𝐺(𝑠∗ − 𝜃) ≥ 𝜅(𝜃)} 𝑝(𝜃|𝑠)𝑑𝜃 

 

(Recall 𝐺(𝑢) = Φ(𝑢/𝜎)for Normal noise.) 

• With cost 𝑐 ∼ 𝑈[0,1]we have 𝐻(𝑝) = 𝑝. So the implied fraction attacking (conditional 
on true 𝜃) is 

equation 45 

𝛼(𝑠∗; 𝜃)   =   ∫ 𝑝collapse(𝑠; 𝑠∗)𝑓(𝑠|𝜃) 𝑑𝑠  

 

• Solve for 𝑠∗so that 𝛼(𝑠∗; 𝜃) = 𝜅(𝜃)(1D root-finding over 𝑠∗). This is done for each 𝜃on 

a grid and for each noise level 𝜎you choose. 

 

Figure 5 comparative statics of the equilibrium cutoff 𝑠∗(𝜃)for different noise levels 𝜎 

Source: Authors calculation 

When agents are homogeneous in the relevant sense (or the equilibrium condition reduces 

to 𝐺(𝑠∗ − 𝜃) = 𝜅(𝜃)), the equilibrium cutoff solves 
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equation 46 

𝐺(𝑠∗(𝜃) − 𝜃) = 𝜅(𝜃). 
 

For Normal measurement noise 𝐺(𝑢) = Φ(𝑢/𝜎), this gives the closed form 

equation 47 

𝑠∗(𝜃)   =   𝜃 + 𝜎 Φ−1 (𝜅(𝜃)) 
 

Comparative statics with respect to noise 𝜎 are immediate: 

equation 48 

∂𝑠∗(𝜃)

∂𝜎
   =   Φ−1 (𝜅(𝜃)) .  

Next, we will plot previous result for: 

✓ Change 𝜅(𝜃)— try a step, nonlinear, or empirically estimated 𝜅(𝜃)and re-run.  
✓ Different cost distributions — use Beta, exponential, or two types (mass point + 

continuous). I’ll re-run. 
✓ Show comparisons with closed-form case (i.e., show analytic 𝑠∗ = 𝜃 +

𝜎Φ−1(𝜅(𝜃))alongside the richer heterogeneous-cost numerical solution). 
✓ Change payoff structure (benefit ≠ 1, different payoffs when peg holds) and show 

how formulas adapt. 
 

 

Figure 6  scenario analysis heterogenous costs and homogenous benchmark 

Source: Authors calculation 
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Table 1 scenario analysis heterogenous costs and homogenous benchmark 
 

theta s*_num s*_anl 

0 0.02 0.02 -0.39075 

1 0.052 0.052 -0.27315 

2 0.084 0.084 -0.19173 

3 0.116 0.116 -0.12305 

4 0.148 0.148 -0.06101 

5 0.18 0.18 -0.00307 

6 0.212 0.212 0.0521 

7 0.244 0.244 0.105301 

8 0.276 0.276 0.157047 

9 0.308 0.308 0.207695 

Source: Authors calculation  
 

Effect of cost distribution 𝐻 

• When many agents have low costs (H puts mass near 0), small posterior probabilities 
𝑝collapse(𝑠)still generate substantial attacking fractions: numeric 𝑠∗will be lower 

(agents attack more easily) compared to the homogeneous benchmark. 
• If costs are concentrated high (most agents expensive to attack), numeric 𝑠∗rises — 

it’s harder to produce the mass needed to meet 𝜅(𝜃). 

Effect of benefit 𝐵 

• Increasing 𝐵scales effective thresholds: fraction attacking at a signal becomes 𝐻(𝐵 ⋅
𝑝collapse(𝑠)). So higher 𝐵→ larger attacking fractions for the same posterior → you 

need a higher cutoff 𝑠∗to keep 𝛼(𝑠∗) = 𝜅(𝜃). Thus s* typically increases with B. 

  Effect of noise σ 

• In the closed-form homogeneous case the sign of ∂𝑠∗/ ∂𝜎equals the sign of Φ−1(𝜅(𝜃)). 
• With heterogeneity, the numeric s* often behaves similarly but the magnitude and 

sometimes sign can be altered by the shape of 𝐻and by B—because H(B·p) is 
nonlinear in p. For example, with H very convex near 0, small increases in p due to 
more noise could produce larger increases in attacking mass, shifting s* more. 

  Kappa(θ) shape 

• If 𝜅(𝜃)is increasing in θ (like linear), you typically get s* moving roughly in step with 
θ (often near the 45° line). 

• If 𝜅(𝜃)has discontinuities or steps, numeric s* can show kinks and locally larger 
sensitivity. 
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Table 2  Mapping this extended model to an applied setting 

Symbol Meaning Real-World Analogy 

𝜃 Fundamentals Reserves, fiscal balance, productivity 

𝜅(𝜃) Collapse rule Central bank defense commitment 

𝜎 Signal noise Information precision, market transparency 

𝑠𝑖 Private signal Market analyst’s data, trader’s info 

𝐵 Benefit from attack Profit per speculative short 

𝑐𝑖, 𝐻(𝑐) Attack cost distribution Risk aversion, liquidity constraints, access to leverage 

𝛼(𝑠) Fraction attacking Speculative pressure / market sentiment 

𝑠∗(𝜃) Cutoff signal Market threshold for speculative action 

Source: Authors calculation  

 

Global-game (Morris–Shin) — unique equilibrium derivation 

We introduce noisy private signals 𝑠𝑖 = 𝜃 + 𝜀𝑖with continuous distribution 𝐺(CDF) and 

density 𝑔(PDF). Agents are symmetric and Bayes-rational. We look for symmetric monotone 

cutoff strategies: there exists a function 𝑠∗(𝜃)such that agent 𝑖attacks iff 𝑠𝑖 ≤ 𝑠∗(𝜃)(i.e., lower 

signal = worse perceived fundamental → more likely to attack). 

Key steps: 

1. Given true 𝜃, the fraction of attackers (in the continuum limit) is 

equation 49 

𝛼(𝜃)   =   Pr (𝑠 ≤ 𝑠∗(𝜃) ∣ 𝜃)   =   𝐺(𝑠∗(𝜃) − 𝜃). 

 

(This is because 𝑠 − 𝜃 = 𝜀 has CDF 𝐺.) 

2. Government collapses iff 𝛼(𝜃) ≥ 𝜅(𝜃). In an equilibrium, the cutoff 𝑠∗(𝜃)should be the 
signal making an agent indifferent between attacking and not attacking given the 
expected collapse probability resulting from the strategy 𝑠∗. Under the standard 
reduced-form payoffs and homogeneous costs (or normalized units), this indifference 
condition reduces to: 

equation 50 

Pr (collapse ∣ 𝑠𝑖 = 𝑠∗) = 𝜅(𝜃). 
 

However, because with continuum players the fraction attacking given 𝜃 is 𝛼(𝜃) =

𝐺(𝑠∗ − 𝜃), the natural self-consistency requirement is 

equation 51 

𝐺(𝑠∗(𝜃) − 𝜃) = 𝜅(𝜃).  
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3. Existence & uniqueness: For each fixed 𝜃: 

• 𝑢 ↦ 𝐺(𝑢)is continuous, strictly increasing, taking values in [0,1]. 
• So the equation 𝐺(𝑢) = 𝜅(𝜃)has a unique solution 𝑢 = 𝐺−1(𝜅(𝜃)). 
• Therefore 𝑠∗(𝜃)is uniquely given by 

equation 52 

 𝑠∗(𝜃) = 𝜃 + 𝐺−1(𝜅(𝜃))  
 

Uniform noise 

If 𝜀 ∼ Uniform[−𝜀, 𝜀], then for 𝑢 ∈ [−𝜀, 𝜀], 

equation 53 

𝐺(𝑢) =
𝑢 + 𝜀

2𝜀
. 

 

Solve 𝐺(𝑠∗ − 𝜃) = 𝜅(𝜃): 

𝑠∗ − 𝜃 + 𝜀

2𝜀
= 𝜅(𝜃) ⇒ 𝑠∗ = 𝜃 + 2𝜀𝜅(𝜃) − 𝜀. 

 

If 𝜅(𝜃) = 𝜃this simplifies to 

𝑠∗(𝜃)   =   𝜃(1 + 2𝜀) − 𝜀 

 

Clip 𝑠∗to lie within [𝜃 − 𝜀, 𝜃 + 𝜀]if needed. 

Normal noise 

If 𝜀 ∼ 𝒩(0, 𝜎2), 𝐺(𝑢) = Φ(𝑢/𝜎)with Φthe standard normal CDF. Solve 

equation 54 

Φ  (
𝑠∗ − 𝜃

𝜎
) = 𝜅(𝜃) ⇒ 𝑠∗(𝜃) = 𝜃 + 𝜎Φ−1 (𝜅(𝜃)). 

 

If 𝜅(𝜃) = 𝜃then 

Comparative statics wrt noise 𝜎(normal case) 

Differentiate the normal closed form: 
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equation 55 

∂𝑠∗(𝜃)

∂𝜎
= Φ−1 (𝜅(𝜃)). 

 

Interpretation: 

• If 𝜅(𝜃) > 1/2then 𝑠∗(𝜃)increases with 𝜎. 
• If 𝜅(𝜃) < 1/2then 𝑠∗(𝜃)decreases with 𝜎. 

This is the simple analytic comparative-static result we used earlier. 

Heterogeneous-cost extension (general 𝑯(𝒄)and benefit 𝑩) 

Now let 𝑐𝑖be iid with CDF 𝐻(𝑐)on [0, ∞). Suppose payoff from a successful attack is 

𝐵 − 𝑐, from failed attack −𝑐, and from not attacking 0. Given a signal 𝑠, an agent forms 

posterior over 𝜃and thereby computes the posterior probability that the peg will collapse if the 

population uses cutoff strategy 𝑠∗(⋅). Denote by 

equation 56 

𝑝collapse(𝑠; 𝑠∗(⋅))   =   Pr (collapse ∣ 𝑠) 

 

the posterior collapse probability (this depends on how the cutoff maps 𝜃 ↦ 𝑠∗(𝜃); in 

the continuum limit and with a prior 𝜋(𝜃)one computes this via Bayes’ rule). 

An agent with cost 𝑐attacks iff: 

equation 57 

𝐵 ⋅ 𝑝collapse(𝑠)   ≥   𝑐 ⟺ 𝑐 ≤ 𝐵 ⋅ 𝑝collapse(𝑠). 

 

So conditional on signal 𝑠, the fraction of agents who attack is 𝐻(𝐵 ⋅ 𝑝collapse(𝑠)). 

Given true 𝜃, the ex ante fraction of attackers (averaging over signals) is 

equation 58 

𝛼(𝑠∗; 𝜃)   =   ∫ 𝐻(𝐵 ⋅ 𝑝collapse(𝑠; 𝑠∗))𝑓(𝑠 ∣ 𝜃) 𝑑𝑠, )  

where 𝑓(𝑠 ∣ 𝜃)is the density of 𝑠 = 𝜃 + 𝜀. 

Equilibrium self-consistency with the government rule 𝛼 ≥ 𝜅(𝜃)becomes: for each 𝜃, 

𝑠∗(𝜃)must satisfy 
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equation 59 

 𝛼(𝑠∗(⋅); 𝜃)   =   𝜅(𝜃) 

where 𝛼depends on the entire function 𝑠∗(⋅)via the posterior 𝑝collapse(𝑠; 𝑠∗). This is a fixed-

point equation in the space of functions 𝑠∗(⋅). In practice we solve  𝛼(𝑠∗(⋅); 𝜃)   =   𝜅(𝜃) 

numerically: 

• For a candidate 𝑠∗(⋅), compute for each observed signal 𝑠the posterior 𝜋(𝜃 ∣ 𝑠)and 
then 

equation 60 

𝑝collapse(𝑠; 𝑠∗) = ∫ 𝟏{𝐺(𝑠∗(𝜃) − 𝜃) ≥ 𝜅(𝜃)}(𝜃 ∣ 𝑠) π𝑑𝜃  

 

• Then compute 

equation 61 

 𝛼(𝑠∗; 𝜃) = ∫ 𝐻(𝐵 ⋅ 𝑝collapse(𝑠; 𝑠∗))𝑓( 𝑠 ∣ 𝜃) 𝑑𝑠 

• Solve 𝛼(𝑠∗; 𝜃) = 𝜅(𝜃)for 𝑠∗(𝜃)for each 𝜃(1D root-finding). Iterate (or solve directly if 
monotonicity holds). 

when 𝐻(𝑥) = 𝑥(uniform costs on [0,1]) and 𝐵 = 1, the algebra simplifies and one 

recovers a form close to the basic equation  used in Morris–Shin.  

In a finite population of 𝑁agents, given a cutoff 𝑠∗(𝜃)and true 𝜃, the realized fraction 

of attackers is random: 

equation 62 

𝛼̂𝑁(𝜃) =
1

𝑁
∑ 𝟏{𝑠𝑖 ≤ 𝑠∗(𝜃)}.

𝑁

𝑖=1

 

By the law of large numbers 𝛼̂𝑁(𝜃) → 𝛼(𝜃) = 𝐺(𝑠∗(𝜃) − 𝜃)as 𝑁 → ∞. For finite 𝑁we can 

evaluate the collapse probability 

inequality 11 

Pr (𝛼̂𝑁(𝜃) ≥ 𝜅(𝜃)) 

 

via Binomial approximations or Monte Carlo simulation.  
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Morris–Shin global-game logic into a simple central-bank sterilization framework 

Here we extend Morris-Shin model of currency attacks with sterilization12 by Central bank. Key 

assumptions here are: 

➢ Speculators receive private signals 𝑠𝑖 = 𝜃 + 𝜀𝑖, 𝜀𝑖 ∼ 𝑁(0, 𝜎2). 
➢ Government abandons the peg iff fraction attacking 𝛼 ≥ 𝜅(𝜃). Baseline 𝜅(𝜃) = 𝜃. 
➢ Sterilization is modeled as a short-run policy that increases the government's 

effective threshold by 𝛿: 𝜅ster(𝜃) = clip(𝜃 + 𝛿, 0,1). (Interpretation: sterilized 
intervention temporarily strengthens defense credibility.) 

➢ We study how this policy shifts the equilibrium cutoff 𝑠∗(𝜃)and the finite-𝑁 collapse 
probability. 

With Normal noise, the global-games fixed-point becomes 

equation 63 

Φ  (
𝑠∗(𝜃) − 𝜃

𝜎
) = 𝜅(𝜃) 

 

so the closed-form equilibrium cutoff is 

equation 64 

𝑠∗(𝜃) = 𝜃 + 𝜎 Φ−1 (𝜅(𝜃))  

(Apply 𝜅 = 𝜅noor 𝜅sterto compare.) 

Comparative static with respect to σ: 

equation 65 

∂𝑠∗(𝜃)

∂𝜎
= Φ−1 (𝜅(𝜃)). 

 

 

 

 
12 In economics, "sterilization" refers to a central bank's action to offset the effects of foreign exchange market 
interventions on the domestic money supply, using techniques like open market operations to maintain monetary 
stability 
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Figure 7 Morris–Shin global-game logic into a simple central-bank sterilization framework 

Source: Authors calculation  

Now we will: 

➢ Make sterilization dynamic (CB chooses sterilization intensity, pays interest cost that 
reduces reserves; model reserves evolution and solve Bellman or simple open-loop 
path). 

➢ Replace the ad-hoc 𝜅(𝜃) + 𝛿 rule with a micro-founded relationship: 𝜅(𝜃; 𝑅) where R 
= reserves and sterilization changes R via purchases/sales and domestic asset 
sales. 

➢ Introduce heterogeneous costs 𝐻(𝑐) and solve the integral fixed-point numerically 
(as we did earlier) under sterilization. 

➢ Compute welfare/CB cost tradeoffs: how much sterilization (𝛿) reduces collapse 
probability vs its fiscal cost. 

Model is as follows:  

1. Environment and signals 

➢ Fundamental (fixed): 𝜃. 

➢ Private signal: 𝑠𝑖 = 𝜃 + 𝜀𝑖, 𝜀𝑖 ∼ 𝒩(0, 𝜎2). 
➢ Government/CB: defends peg. Peg collapses if fraction attacking 𝛼 ≥ 𝜅(𝜃; 𝑅). 
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➢ Heterogeneous attacker costs: 𝑐𝑖 ∼ 𝐻(⋅)with CDF 𝐻(I use Beta(2,2) in the code). 
➢ Benefit of success normalized to 𝐵 = 1for the demo (you can change). 

2. Micro-founded collapse threshold 𝜅(𝜃; 𝑅) 
I used a simple, intuitive functional form where reserves raise the tolerance for 
attacks13: 

equation 66 

  𝜅(𝜃; 𝑅) = clip  (𝜃 + 𝛼 ⋅
𝑅

𝑅 + 𝑅scale
 ,  0,1) 

 

with parameters 𝛼 ∈ [0,1](how strongly reserves help) and 𝑅scale > 0(scale). 

3. Static equilibrium cutoff for a given 𝑅(heterogeneous costs — integral fixed point) 

For a fixed reserve level 𝑅, define 𝑘(𝜃): = 𝜅(𝜃; 𝑅). With continuum Bayesians and 
heterogeneous costs 𝐻, the self-consistency is: 

➢ For any candidate cutoff 𝑠∗, compute the posterior collapse probability conditional on 

observing signal 𝑠: 

equation 67 

𝑝𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒(𝑠, 𝑠∗, 𝑅) = ∫ 1{𝐺(𝑠∗(𝑡) − 𝑡) ≥ 𝑘 ∗ 𝑡)}]𝜋(𝑡|𝑠)𝑑𝑡 

where 𝐺(𝑢) = Φ(𝑢/𝜎)for Normal noise and 𝜋(𝑡 ∣ 𝑠)is the posterior over 

fundamentals. 

➢ Given 𝑝collapse(𝑠), fraction of attackers among agents with signal 𝑠is 𝐻(𝐵 ⋅

𝑝collapse(𝑠)). 

➢ The aggregate fraction attacking when the true fundamental is 𝜃is 

equation 68 

𝛼(𝑠∗; 𝜃, 𝑅)   =   ∫ 𝐻(𝐵 ⋅ 𝑝collapse(𝑠; 𝑠∗, 𝑅)) 𝑓(𝑠 ∣ 𝜃) 𝑑𝑠. 

 

➢ The equilibrium cutoff 𝑠∗(𝜃; 𝑅)solves 

equation 69 

 𝛼(𝑠∗(𝜃; 𝑅); 𝜃, 𝑅) = 𝑘(𝜃) 

 
13 In mathematics and computer science, "clip" or "clamping" means to constrain a value to a specific range, 
ensuring it does not go below a minimum or above a maximum. 
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This is the same integral fixed-point we implemented numerically earlier, specialized to 
Normal signals. 

4. Dynamics: reserves, sterilization, and CB cost 

• Reserves evolve deterministically under a constant open-loop sterilization intensity 
𝑢per period: 

𝑅𝑡+1 = max (𝑅𝑡 − 𝑢, 0). 

(This is a simple, transparent open-loop policy; you can switch to an optimization with 

state-dependent 𝑢𝑡.) 

➢ Per-period CB financial cost of sterilizing: 𝑐ster(𝑢𝑡) = 𝜅cost ⋅ 𝑢𝑡(linear per-unit). 

➢ Social loss if collapse occurs in period 𝑡: 𝐿collapse. 

➢ Objective (central planner / social welfare): minimize discounted expected sum over 
horizon 𝑇: 

equation 70 

min
𝑢≥0

∑ 𝛽𝑡{𝜅cost𝑢𝑡 + 𝐿collapse ⋅ Pr (collapse at 𝑡 ∣ 𝑅𝑡)}

𝑇−1

𝑡=0

 

with 𝑢𝑡chosen open-loop constant in our implementation, 𝑅𝑡as above. 

Interpretation & robustness 

 Why did the optimal 𝑢 come out zero? In this particular parameterization the 
endogenous equilibrium cutoff 𝑠∗(even without sterilization) is such that the finite-N collapse 
probability is essentially zero; sterilization costs money, so the optimal trade-off is to not 
sterilize. This is an informative outcome: it shows how reserves + heterogeneity can make 
defense unnecessary in some calibrations. If you want sterilization to matter, change 
parameters that make collapses more likely: reduce 𝑅0(small reserves), raise signal noise 
𝜎(more uncertainty), increase 𝐿collapseor change H to make more speculators cheap to attack 

(e.g., put mass at low cost), or increase horizon 𝑇. I can re-run with any of these 
choices.Limitations of the compact run: I used small grids and modest MC draws to ensure 
the experiment finishes quickly here. For a polished policy analysis you should run higher grid 
resolution, larger N and trials, and possibly optimize over state-dependent policies 
𝑢𝑡(𝑅𝑡)(dynamic programming / Bellman) rather than constant open-loop 𝑢. 

Morris–Shin global-games version of the Diamond–Dybvig bank-run model 

 

This application of global games to a rather modified Diamond, D. W., Dybvig, P. H. 

(1983) model. In the classic model: 

      𝑇 =  0                                                          𝑇 =  1                               𝑇 =  2 

      Unit investment                                 worths 𝑟1  <  𝑟2                    worths  𝑟2 

                                                                                                          (illiquidity)  
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Probability   𝑝 that money are needed in period 1 

Expected utility is given : 

equation 71 

𝐸𝑈 = 𝑝𝑈(𝑟1)  +  (1 − 𝑝)𝑈(𝑟2) 

Illiquid assets                                                       1                              r 

Liquid assets                                                   𝑟1   >  1                     𝑟2   <  𝑟 

 

 

Illiquid assets are making higher returns 

equation 72 

𝐸𝑅 = 𝑝 +  (1 − 𝑝)𝑟 >  𝑡𝑟1  + (1 − 𝑡)𝑟2 

Liquid assets generate higher expected utility  

equation 73 

𝐸𝑈 =  𝑝𝑈(1)  + (1 − 𝑝)𝑈(𝑟)  <  𝑝𝑈(𝑟1)  +  (1 − 𝑝)𝑈(𝑟2)  

 

Good equilibrium: 

➢ depositors in need for money in period 1 do that, others wait until period 2 
  

Bad equilibrium (bank run) 

• depositors expect others to request their money  

• banks have to sell illiquid assets  

•  if more than the share  f  of depositors request their money in period 1,and banks assets 

are spent, where f  is given as:  

 

equation 74 

𝑓𝑟1 = 𝑝𝑟 − 1 + (1 − 𝑝) 

equation 75 

𝑓 =
𝑝𝑟1 + (1 − 𝑝)

𝑟1
= 𝑝 + (1 − 𝑝)

1

𝑟1
< 1 

 



Manuscript received:  24.11.2025                            International Journal of Economics, Management and Tourism 
Accepted: 30.11.2025                                                   Vol 5, No. 2, pp. 7 - 56 

Online: ISSN 2671-3810 
                                                                                                                                           UDC: 336.747:657.47].01 

                       Original research paper 
 

39 
 

Definition 3 

Equilibrium where all depositors expect others to withdraw their money in period 1 is 

self-prophecy equilibrium - a Bank Run. Let   𝜆̃ ≥ 𝜆 denotes all cash withdrawals  𝜆̃ − 𝜆 are 

unforced withdrawals: 

equation 76 

(𝐶1(𝜆̃), 𝐶2(𝜆̃)) |𝜆 ̃ =  𝑟𝑒𝑎𝑙 𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑠  

When  𝜆̃ − 𝜆 is not very high we have 𝐶1(𝜆̃) = 1 but: 

equation 77 

𝐶2(𝜆 ̃) = 𝑅

(1 − 𝜆 − (𝜆 ̃ − 𝜆) (
1
𝐼

)) 

1 − 𝜆 ̃
= 1.5 (1 −

𝜆̃ − 𝜆

1 − 𝜆̃
(

1

𝐼
− 1))

= 1.5 (1 − (𝜆̃ − 𝜆) (
1

𝐼
− 1)

1

1 − 𝜆̃
) 

 

In previous (𝜆̃ − 𝜆) are unforced cash withdrawals  (
1

𝐼
− 1) are costs of cash. When (𝜆̃ − 𝜆) 

is higher if  𝜆̃ ≥ 0.55  bank is forced to liquidate everything. Late depositors will receive 

nothing  

equation 78 

𝐶2(𝜆̃) = 0 

 

Early depositors receive less than was promised to them: 

equation 79 

𝐶1(𝜆 ̃) =
𝜆 + (1 − 𝜆)𝐼 

𝜆 ̃
=

0.55

𝜆 ̃
< 1 

𝐶1(𝜆 ̃) − 𝐶2(𝜆̃)  are incentive of 𝐹 to withdraw unforced. Let’s note that 𝐶1(𝜆 ̃) − 𝐶2(𝜆̃)  

is an increasing function of   𝜆̃. Now we assume that the bank temporarily closes after 

withdrawals 𝜆. Gives 𝐶1 of the first 𝜆 withdrawals but later forbids withdrawals. Bank opens in 

period 2, and makes payment to the rest 𝐹𝑠, 𝐶2 = 1.5.Potential solution is LLR or lender of last 

resort. We assume that CB has resources until 1, due to the government taxations lends by 

rate, 1 + 𝑟 ∈ [1, 𝑅], 𝑟 = 50%.When bank faces withdrawals,  𝜆̃ − 𝜆 , decides to lend from CB 

instead of eliminating projects. This means: 

equation 80 

𝐶2(𝜆̃) =
𝑅(1 − 𝜆) − 1(1 + 𝑟)(𝜆̃ − 𝜆)

1 − 𝜆̃
= 𝑅 +

𝜆̃ − 𝜆

1 − 𝜆̃
(𝑅 − (1 + 𝑟)) = 1.5 
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Bank equilibrium here disappears. LLR stop inneficcient liquidations, and in good 

equilibrium there are no forced withdrawals 𝜆̃ − 𝜆 = 0.Next we will code and plot previous: Top 

panel: early payment 𝐶1(𝜆̃)(gold), late payment without LLR 𝐶2(𝜆̃)(blue), and late payment 

with LLR (green dashed, at 𝑅for our parameter choice). The shaded area shows how LLR 

raises late payments and prevents destructive liquidations. Bottom panel: incentive gap 𝐶1 −

𝐶2(positive values mean depositors prefer to withdraw early even if they don't need cash, 

driving runs). The dashed blue line shows the incentive gap when LLR is available — it 

becomes negative (no incentive to withdraw) across most of the range. 

 

Figure 8 illustration of the Diamond–Dybvig run vs. no-run tradeoff and the effect of a lender-
of-last-resort (LLR) 

Source: Authors calculation  
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Figure 9 Diamond–Dybvigforced liquidation dynamics  

Source: Authors calculation  

In this game true fundamental 𝜃 ∈ [0,1]measures bank strength / severity of bad state 
(higher 𝜃= more fragile). Each depositor receives a private signal 𝑠𝑖 = 𝜃 + 𝜀𝑖, with 𝜀𝑖 ∼
𝑖𝑖𝑑𝒩(0, 𝜎2). If a depositor withdraws early (“attack”) and the bank survives, she gets payoff 0 
(normalized). If the depositor withdraws and the bank fails (run), the withdrawal is successful, 
and she receives payoff 𝐵 − 𝑐𝑖(benefit minus cost). If she waits and the bank survives, she 
gets higher continuation payoff — but we capture the strategic part via a cutoff strategy. Bank 
collapse rule. Let 𝛼be the fraction of depositors withdrawing early. The bank collapses (run) if 

inequality 12 

𝛼 ≥ 𝜅(𝜃), 

where 𝜅(𝜃)is the threshold fraction the bank can absorb. A natural microfounding is 

𝜅(𝜃) = 𝜃(worse fundamentals → lower tolerance), but any increasing mapping works. 

Depositor strategy: 

➢ Suppose depositors use symmetric cutoff strategies: withdraw if 𝑠𝑖 ≤ 𝑠∗(𝜃). (Lower 

𝑠 means perceived fundamentals are worse → more likely to withdraw.) 

Aggregate fraction withdrawing (continuum) 

➢ Given true 𝜃, the fraction withdrawing (in the continuum limit) is 

equation 81 

𝛼(𝜃) = Pr (𝑠 ≤ 𝑠∗(𝜃) ∣ 𝜃) = 𝐺(𝑠∗(𝜃) − 𝜃), 
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where 𝐺 is the CDF of the noise 𝜀. For Normal noise 𝐺(𝑢) = Φ (
𝑢

𝜎
). Equilibrium self-

consistency 

➢ The bank collapses if 𝛼(𝜃) ≥ 𝜅(𝜃). A symmetric cutoff equilibrium requires that the 
chosen cutoff produces the fraction that equals the threshold 𝜅(𝜃). That gives the 
fixed-point condition which is given by: 

equation 82 

𝐺(𝑠∗(𝜃) − 𝜃) = 𝜅(𝜃 

Because 𝐺is strictly increasing and continuous, previous has a unique solution for 

𝑠∗(𝜃)for each 𝜃. This is the Morris–Shin selection. Closed form for Normal signals:If 𝜀 ∼

𝑁(0, 𝜎2), then 𝐺(𝑢) = Φ(𝑢/𝜎)and solving previous yields the closed form 

equation 83 

𝑠∗(𝜃) = 𝜃 + 𝜎 Φ−1 (𝜅(𝜃))  

Comparative statics gives: ∂𝑠∗/ ∂𝜎 = Φ−1(𝜅(𝜃)). So, whether more noise raises or 

lowers the cutoff depends on whether 𝜅(𝜃)is above or below 1/2. 

Heterogeneous withdrawal costs 

➢ If depositors face heterogeneous private withdrawal costs 𝑐𝑖 ∼ 𝐻(𝑐), the fraction who 
withdraw after seeing signal 𝑠equals 𝐻(𝐵 ⋅ 𝑝collapse(𝑠)), where 𝑝collapse(𝑠)is the 

depositor’s posterior probability that the bank collapses given 𝑠. This makes the 
equilibrium condition an integral fixed point: 

equation 84 

𝛼(𝑠∗; 𝜃) = ∫ 𝐻(𝐵 ⋅ 𝑝collapse(𝑠; 𝑠∗)) 𝑓(𝑠 ∣ 𝜃) 𝑑𝑠 = 𝜅(𝜃), 

Where: 

equation 85 

 𝑝collapse(𝑠; 𝑠∗) = ∫ 𝟏{𝐺(𝑠∗(𝑡) − 𝑡) ≥ 𝜅(𝑡)} 𝜋( 𝑡 ∣ 𝑠 ) 𝑑𝑡.  

This generally must be solved numerically (as in the Morris–Shin heterogeneous 
extension).  Bank holds liquid reserves 𝑅and illiquid loans of face value 𝑄(payoff in the good 

state). If the bank is forced to liquidate loans at fire-sale value 𝜙 ∈ [0,1], the liquidation value 

is 𝜙𝑄.  Let 𝜃 ∈ [0,1]be the “fundamental” which we map to liquidation recovery: 𝜙 = 𝜙(𝜃). For 
simplicity one natural mapping is 𝜙(𝜃) = 𝜃(higher 𝜃= higher recovery fraction). If a fraction 𝛼of 
depositors withdraw early, the bank can meet withdrawals without insolvency if 

inequality 13 

𝛼 ≤
𝑅 + 𝜙(𝜃)𝑄

𝐷
. 
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If 𝛼exceeds that capacity the bank must liquidate at a loss and is considered to have run / 
failed.We  define the collapse threshold 

equation 86 

𝜅(𝜃; 𝑅)   =    min   { 
𝑅 + 𝜙(𝜃)𝑄

𝐷
 ,  1} 

Depositor 𝑖has private signal 𝑠𝑖 = 𝜃 + 𝜀𝑖, 𝜀𝑖 ∼ 𝑖𝑖𝑑𝐺(e.g. 𝑁(0, 𝜎2)). 

➢ Depositor chooses action 𝑎𝑖 ∈ {0,1}(1 = withdraw early, 0 = wait). 
➢ Payoffs (reduced form): if withdraw and bank fails → payoff 𝐵 − 𝑐𝑖; if withdraw and 

bank survives → payoff −𝑐𝑖(cost of early withdrawal); if wait → normalized payoff 

0(or continuation payoff). 𝑐𝑖are private heterogeneous costs with CDF 𝐻(⋅). 
➢ Assume symmetric cutoff strategies: withdraw iff 𝑠𝑖 ≤ 𝑠∗(𝜃; 𝑅). 

➢ Given 𝜃and cutoff 𝑠∗(𝜃; 𝑅), the fraction withdrawing is 

equation 87 

𝛼(𝜃; 𝑅) = 𝐺(𝑠∗(𝜃; 𝑅) − 𝜃). 
 

➢ The bank collapses when 𝛼(𝜃; 𝑅) ≥ 𝜅(𝜃; 𝑅). In symmetric equilibria the cutoff must 
satisfy the self-consistency condition that the induced 𝛼 equals the threshold: 

equation 88 

𝐺(𝑠∗(𝜃; 𝑅) − 𝜃) = 𝜅(𝜃; 𝑅) 
Because 𝐺is strictly increasing, previous has a unique solution for 𝑠∗(𝜃; 𝑅)for each 
(𝜃, 𝑅)— this is the Morris–Shin selection mechanism.Closed form (Normal signals): If 

𝐺(𝑢) = Φ(𝑢/𝜎), solving previous yields 

equation 89 

  𝑠∗(𝜃; 𝑅) = 𝜃 + 𝜎 Φ−1 (𝜅(𝜃; 𝑅)) 
This is the homogeneous-cost closed form.  For heterogeneous 𝑐 ∼ 𝐻, conditional on 

observing 𝑠an agent’s posterior collapse probability is 

equation 90 

𝑝collapse(𝑠; 𝑠∗, 𝑅) =  ∫ 𝟏{𝐺(𝑠∗(𝑡; 𝑅) − 𝑡) ≥ 𝜅(𝑡; 𝑅)}𝜋(𝑡 ∣ 𝑠) 𝑑𝑡 . 

Fraction that withdraw among those who saw 𝑠is 𝐻(𝐵 ⋅ 𝑝collapse(𝑠)).  Aggregate fraction 

when true 𝜃is 

equation 91 

𝛼(𝑠∗; 𝜃, 𝑅) = ∫ 𝐻(𝐵 ⋅ 𝑝collapse(𝑠; 𝑠∗, 𝑅))  𝑓(𝑠 ∣ 𝜃) 𝑑𝑠. 

The equilibrium cutoff solves 𝛼(𝑠∗; 𝜃, 𝑅) = 𝜅(𝜃; 𝑅)for each 𝜃. Numerical root-finding 
completes the solution.Policy modeling (concepts) 

➢ Reserves 𝑅enter directly into 𝜅(𝜃; 𝑅)(raising R increases capacity and increases 𝜅). 
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➢ Deposit insurance: reduces private benefit of early withdrawal — model as reducing 
the effective benefit 𝐵 ↦ 𝐵(1 − ins_cover). The regulator’s budget cost equals 
expected shortfall × probability of run (paid on failure). 

➢ Disclosure: improves the precision of signals → reduces 𝜎; more precise signals 
typically reduce coordination failures (but comparative statics can depend on 

𝜅values; Morris–Shin result: ∂𝑠∗/ ∂𝜎 = Φ−1(𝜅)). 

Next, we will code and plot this model: 

 

 

Figure 10 Equilibrium cutoffs under different policies and average bank run probability vs 
policy intensity  

Source: Authors’ own calculations 

Morris–Shin global-games version of the Diamond–Dybvig bank-run model 

(Heterogenous depositor types) 

So, we are extending previous model DD global games with heterogeneous depositor 

types. Model is as follows: 
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➢ Fundamental: 𝜃 ∈ [0,1](bank asset liquidation quality). 

➢ Private signal: 𝑠𝑖 = 𝜃 + 𝜀𝑖, 𝜀𝑖 ∼ 𝑖𝑖𝑑𝒩(0, 𝜎2). 
➢ Depositors decide: withdraw early (1) or wait (0). 
➢ Bank capacity (micro-founded): if fraction 𝛼withdraws, bank meets withdrawals iff 

equation 92 

𝛼 ≤ 𝜅(𝜃; policy) =
𝑅 + 𝜙(𝜃) 𝑄

𝐷
(clipped to [0,1]), 

where R are reserves, Q  are illiquid loans, and ϕ(θ)is the fire-sale recovery (we often set 

ϕ(θ) = θ). Heterogeneous costs 

➢ Each depositor i has private cost 𝑐𝑖of withdrawing, iid with CDF 𝐻(𝑐). Benefit if 
withdrawing when bank collapses is 𝐵(net of normal reward); if bank survives, early 
withdrawer may get less — simplified reduced form: expected benefit of withdrawing 
equals 𝐵 ⋅ 𝑝collapse(𝑠)where 𝑝collapse(𝑠)is the depositor’s posterior probability of 

collapse conditional on her signal 𝑠. 

➢ Given signal s, everyone with cost 𝑐𝑖 ≤ 𝐵 ⋅ 𝑝collapse(𝑠)will withdraw. So the fraction 

who withdraw conditional on s is :𝐻(𝐵 ⋅ 𝑝collapse(𝑠)). 

 

Suppose depositors use a cutoff rule 𝑠∗(⋅)(withdraw iff 𝑠 ≤ 𝑠∗). Given candidate cutoff 

profile 𝑠∗(𝑡)over t, a depositor seeing signal s forms posterior 𝜋(𝑡 ∣ 𝑠). For each possible t 

the depositor would expect the bank to collapse if the fraction triggered by cutoff at t exceeds 

𝜅(𝑡). The depositor thus computes: 

equation 93 

𝑝𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒(𝑠) = ∫ 𝟏{𝐺(𝑠∗(𝑡) − 𝑡) ≥ 𝜅(𝑡)} π(t|s)dt 

where 𝐺(𝑢) = Pr (signal ≤ 𝜃 + 𝑢) = Φ(𝑢/𝜎)for Normal noise. 

Equilibrium fixed point :The aggregate fraction withdrawing when the true fundamental is 
𝜃is 

equation 94 

𝛼(𝑠∗; 𝜃) = ∫ 𝐻(𝐵 ⋅ 𝑝collapse(𝑠)) 𝑓(𝑠 ∣ 𝜃) 𝑑𝑠. 

 

The equilibrium cutoff 𝑠∗(𝜃)must satisfy 

equation 95 

𝛼(𝑠∗(𝜃); 𝜃) = 𝜅(𝜃) 
For Normal signals and homogeneous costs it reduces to the closed form: 
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equation 96 

𝑠∗(𝜃) = 𝜃 + 𝜎 Φ−1 (𝜅(𝜃)). 

 

 

 

Figure 11 avg.bank run prob. Vs 𝜑 , 𝐻 

Source: Authors’ own calculations 

Diamond Coconut search model and global games 

This part is due to Diamond (1982) model. First, we will outline the model features then 

we will present global games framework in this model. Utility function in this economy is: 

𝑈 = 𝑦 − 𝑐 
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✓ 𝑦 −output consumption   
✓ 𝑐 −production costs  (disutility of labor )  

✓ 𝑉 =discounted lifetime utility  𝑉 = 𝑒−𝑟𝑡𝑖𝑈𝑡𝑖
 

✓ 𝑎 −arrival rate in the economy (new workers)   

In this economy:  

inequality 14 

𝑐 ≥ 𝑐 > 0 

Сall production possibilities below 𝑐∗ are undertaken. Furthermore :  

✓ 𝑒̇ = 𝑎(1 − 𝑒)𝐺(𝑐∗) − 𝑒𝑏(𝑒) -employment rate   
✓ 𝑏 – probability of successful match 

In steady state 𝑒̇ = 0 

equation 97 

𝑑𝑒

𝑑𝑐∗
|𝑒̇=0 =

𝑎(1 − 𝑒)𝐺′(𝑐∗)

𝑏(𝑒) + 𝑒𝑏′(𝑒) + 𝑎𝐺(𝑐∗)
 

Individual choice is: 

equation 98 

𝑟𝑊𝑒 = 𝑏(𝑦 − 𝑊𝑒 − 𝑊𝑢) 

равенка 1 

𝑟𝑊𝑢 = 𝑎 ∫ (𝑊𝑒 − 𝑊𝑢 − 𝑐)𝑑𝐺(𝑐)
𝑐∗

0

 

𝑟𝑊𝑒-discounted value of having coconut (being employed)  

𝑊𝑒 − 𝑊𝑢-value of discounted utility of being employed versus being unemployed. 

Furthermore: 

equation 99 

𝑐∗ = 𝑊𝑒 − 𝑊𝑢 =
𝑏𝑦 + 𝑎 ∫ 𝑐𝑑𝐺 

𝑐∗

0

𝑟 + 𝑏 + 𝑎𝐺(𝑐∗)
 

equation 100 

𝑑𝑐∗

𝑑𝑒
=

(𝑦 − 𝑐∗)𝑏′

𝑟 + 𝑏 + 𝑎𝐺 
> 0 

equation 101 

𝑑2𝑐∗

𝑑𝑒2
=

(𝑦 − 𝑐∗)𝑏′′ − 2𝑏′ (
𝑑𝑐∗

𝑑𝑒
) − 𝑎𝐺′ (

𝑑𝑐∗

𝑑𝑒
)

2

𝑟 + 𝑏 + 𝑎𝐺 
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With probability   𝑏 employed has trade opportunity that is increasing instant 

consumption  𝑦 and change in status. Every unemployed that accepts production possibility 

has instantaneous utility function  𝑐  and status change in employed.  

 

In the static version of this model:  

✓ 𝑐 = 𝑓(𝑦) -aggregate cost function    

✓ 𝑓′ > 0, 𝑓′′ > 0   
✓ 𝑝(𝑦) -probability of trade. 

Utility(welfare): 

equation 102 

𝑈 = 𝑦𝑝(𝑦) − 𝑐 

= 

equation 103 

 

𝑝(𝑦) = 𝑓′(𝑦) 

Optimality condition is :  𝑝(𝑦) + 𝑦𝑝′(𝑦) = 𝑓′(𝑦) 

𝑦 + 𝑔-aggregate demand  g -output produced for public consumption   

 

equation 104 

𝑈 = 𝑦𝑝(𝑦 + 𝑔) − 𝑔 − 𝑉(𝑔) − 𝑐 - (welfare)   

 
in equilibrium production decision is : 

equation 105 

𝑝(𝑦 + 𝑔) = 𝑓′(𝑦) 

𝑑𝑦

𝑑𝑔
= −

𝑝′

𝑝′ − 𝑓′′
⇒ 𝑝′ − 𝑓′′ < 0 →

𝑑𝑦

𝑑𝑔
> 0 

Optimal public consumption is: 

equation 106 

𝑑𝑈

𝑑𝑔
= 𝑦𝑝′ − 1 + 𝑉′ + (𝑝 + 𝑦𝑝′ − 𝑓′)

𝑑𝑦

𝑑𝑔
= 0  

equation 107 

𝑉′ = 1 − 𝑦′𝑝 (1 +
𝑑𝑦

𝑑𝑔
) = 1 +

𝑦𝑝′𝑓′′

𝑝′ − 𝑓′′
< 1 
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In steady-state utility per capita satisfies: 

equation 108 

𝑄(𝑡) = 𝑒𝑏(𝑒)𝑦 − 𝑎(1 − 𝑒) ∫ 𝑐𝑑𝐺 
𝑐∗

0

 

✓ 𝑒𝑏(𝑒) rate of sales   , 
✓ 𝑎(1 − 𝑒) is rate of production  

✓ ∫ 𝑐𝑑𝐺 
𝑐∗

0
 average cost per project, 

Societal discounted utility 𝑄(𝑡)  

equation 109 

𝑊 = ∫ 𝑒−𝑟𝑡𝑄(𝑡)𝑑𝑡 
∞

0

 

  

𝑟
𝜕𝑊

𝜕𝑐∗
= −𝑎(1 − 𝑒)𝑐∗𝐺′(𝑐∗) + [𝑦(𝑏 + 𝑒𝑏′) + 𝑎 ∫ 𝑐𝑑𝐺

𝑐∗

0

]
𝑎(1 − 𝑒)𝐺′(𝑐∗)

𝑟 + 𝑏 + 𝑒𝑏′ + 𝑎𝐺(𝑐∗)
  

In previous: 

✓ −𝑎(1 − 𝑒)𝑐∗𝐺′(𝑐∗)-increase in cost of production    

✓ [𝑦(𝑏 + 𝑒𝑏′) + 𝑎 ∫ 𝑐𝑑𝐺
𝑐∗

0
]

𝑎(1−𝑒)𝐺′(𝑐∗)

𝑟+𝑏+𝑒𝑏′+𝑎𝐺(𝑐∗)
- change in output and production costs 

 

No intervention equilibirum: 

equation 110 

𝑟
𝜕𝑊

𝜕𝑐∗
= −𝑎(1 − 𝑒)𝑐∗𝐺′ +

𝑦𝑒𝑏′ + 𝑐∗(𝑟 + 𝑏 + 𝑎𝐺)𝑎(1 − 𝑒)𝐺′

𝑟 + 𝑏 + 𝑒𝑏′ + 𝑎𝐺 
=

𝑎(1 − 𝑒)𝐺′𝑒𝑏′

𝑟 + 𝑏 + 𝑒𝑏′ + 𝑎𝐺
(𝑦 − 𝑐∗) > 0 
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Figure 12 Steady state employment vs arrival rate and steady-state vs arrival rate (second 
panel are multiple equilibria of previous) 

Source: Authors’ own calculations 

 Now, we will do global reformulation of the model: Each firm receives a private noisy signal: 

equation 111 

𝑠𝑖 = 𝐴 + 𝜀𝑖 , 𝜀𝑖 ∼ 𝑁(0, 𝜎2) 

Each firm must decide whether to create a vacancy based on its belief about how many 
others will also do so — exactly like in currency attack models. Each firm’s expected payoff 
from posting a vacancy is: 

equation 112 

Π𝑖(𝑠𝑖) = 𝑞(𝜃(𝑠𝑖))[𝐴 − 𝑤] − 𝑐 
 

where 𝜃(𝑠𝑖)is the expected tightness given private signal 𝑠𝑖. 

Each firm attacks/posts if expected profit ≥ 0, i.e. 

inequality 15 

𝔼[𝐴 ∣ 𝑠𝑖] ≥ 𝐴∗(𝜃) 
for some cutoff 𝐴∗, where 𝐴 is fundamental productivity. In the global game, we have: 

equation 113 

𝛼(𝐴) = Pr (𝑠𝑖 ≥ 𝑠∗(𝐴)) = 1 − Φ (
𝑠∗ − 𝐴

𝜎
) 

And the equilibrium cutoff 𝑠∗satisfies a self-consistent condition: 

equation 114 

Eπ (Expected profit) given 𝑠∗ = 0 
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Since the mapping between A and the proportion of participants is now strictly monotone 

(because of the Gaussian smoothing), there can be only one fixed point. 

Table 3 Common knowledge game vs noisy game  

Case Description Equilibria 

Common Knowledge 
(No Noise) 

Multiple intersections of firm best response and 
equilibrium condition 

Multiple θ’s 
(low/high) 

Global Game (Noisy 
Signal) 

Expectation curve smoothed out Unique θ* 

Next, we will code and plot results 

 

Figure 13 Multiple equilibria vs unique eq.in global game of matching model  

Source: Authors’ own calculations 

We will do step-by-step derivation of the equilibrium cutoff 𝑠∗in a Diamond search 

model reinterpreted as a global game (firms get noisy private signals about productivity 

𝐴).There is a continuum of identical potential posting firms and a continuum of searching 

workers. Let market tightness be 𝜃 = 𝑣/𝑢(vacancies per unemployed), where 𝑣= mass of 

vacancies, 𝑢= mass of unemployed. The matching function is 

equation 115 

𝑚(𝑢, 𝑣) = 𝑀𝑢𝛼𝑣1−𝛼, 0 < 𝛼 < 1, 𝑀 > 0  
 

A firm that posts a vacancy meets a worker with probability 

equation 116 

𝑞(𝜃) =
𝑚(𝑢, 𝑣)

𝑣
= 𝑀𝜃−𝛼. 

(we can use any decreasing 𝑞(𝜃).) 
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The productivity (fundamental) is 𝐴. Firms do not observe 𝐴perfectly; each firm receives a 

private signal 

equation 117 

𝑠 = 𝐴 + 𝜀, 𝜀 ∼ 𝒩(0, 𝜎2), 

✓  
  If a vacancy posts and fills, the match surplus (flow) is 𝑆(𝐴). For simplicity take 
𝑆(𝐴) = 𝐴 − 𝑤with wage 𝑤(or simply 𝑆(𝐴) = 𝐴if wages are normalized out). The cost 

of posting a vacancy is 𝑐 > 0(flow or per-period posting cost in a static decision). 
✓ Firms decide once (post or not). The game is: each firm posts iff expected payoff ≥ 0 

given its private signal and beliefs about how many others post. 

Let firms use a symmetric cutoff rule: post a vacancy if 𝑠 ≥ 𝑠∗. Given a candidate cutoff 𝑠∗, 

the fraction of firms who post conditional on the true 𝐴is 

equation 118 

𝛼(𝐴; 𝑠∗)   =   Pr (𝑠 ≥ 𝑠∗ ∣ 𝐴)   =   1 − Φ  (
𝑠∗ − 𝐴

𝜎
) , 

where Φis the standard normal CDF. If the fraction of firms posting is 𝛼, then aggregate 

tightness 𝜃is proportional to 𝛼(since 𝑣 ∝ 𝛼and 𝑢is determined by labor market; for the fixed-

mass normalization we can take 𝑢 = 1so 𝑣 = 𝛼and 𝜃 = 𝛼). For concreteness we take the 

simple proportionality: 

equation 119 

𝜃(𝐴)   =   𝛼(𝐴; 𝑠∗).  
Given 𝜃, the job-filling probability is 𝑞(𝜃) = 𝑀𝜃−𝛼. A firm with signal 𝑠computes its expected 
payoff from posting (static decision) as 

Π(𝑠)   =   𝔼[ 𝑞(𝜃(𝐴)) ⋅ 𝑆(𝐴) ∣ 𝑠 ]   −   𝑐. 

Because the post-decision cannot influence others (continuum), the firm treats 𝜃(𝐴)as a 

function of 𝐴 only. With the cutoff rule the firm expects 𝜃(𝐴) = 𝛼(𝐴; 𝑠∗)as in previous14. Write 
this indifference condition explicitly15: 

equation 120 

𝔼[ 𝑞(𝛼(𝐴; 𝑠∗)) 𝑆(𝐴) ∣ 𝑠 = 𝑠∗]   =   𝑐.  

By Bayes’ rule, the posterior density of 𝐴given 𝑠is 

 

14 A cutoff 𝑠∗is an equilibrium cutoff if the firm indifferent at 𝑠 = 𝑠∗, i.e.Π(𝑠∗) = 0. 

15 This is the key condition: given the profile 𝑠∗(used to compute 𝛼(⋅; 𝑠∗)), the firm that receives signal exactly 𝑠∗is 
indifferent. 
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equation 121 

𝜋(𝐴 ∣ 𝑠)   =   
𝜑  (

𝑠 − 𝐴
𝜎

)

∫ 𝜑  (
𝑠 − 𝑡

𝜎
)  𝑑𝑡

 

 

(where 𝜑is the standard normal pdf; if prior for 𝐴is uniform on a wide range we can use the 

unnormalized expression and renormalize numerically).Then 𝔼[ 𝑞(𝛼(𝐴; 𝑠∗)) 𝑆(𝐴) ∣ 𝑠 =

𝑠∗]   =   𝑐.   becomes 

equation 122 

∫ 𝑞(𝛼(𝐴; 𝑠∗)) 𝑆(𝐴) 𝜋(𝐴 ∣ 𝑠∗) 𝑑𝐴   =   𝑐.  
 

Recall 𝛼(𝐴; 𝑠∗) = 1 − Φ (
𝑠∗−𝐴

𝜎
). So the integrand is known given 𝑠∗. Thus 

∫ 𝑞(𝛼(𝐴; 𝑠∗)) 𝑆(𝐴) 𝜋(𝐴 ∣ 𝑠∗) 𝑑𝐴   =   𝑐 is one scalar equation in the scalar unknown 
𝑠∗.Equivalently, put everything on the LHS as a function 𝐹(𝑠∗): 

equation 123 

𝐹(𝑠∗): = ∫ 𝑞 (1 − Φ (
𝑠∗ − 𝐴

𝜎
))  𝑆(𝐴) 𝜋( 𝐴 ∣ 𝑠∗ ) 𝑑𝐴 − 𝑐, 

and the equilibrium cutoff solves 𝐹(𝑠∗) = 0. The mapping 𝑠∗ ↦ 𝛼(𝐴; 𝑠∗) = 1 − Φ (
𝑠∗−𝐴

𝜎
)is 

strictly decreasing in 𝑠∗for each fixed 𝐴. (Higher cutoff → fewer firms post given A.)Thus 
𝑠∗ ↦ 𝑞(𝛼(𝐴; 𝑠∗))is strictly increasing in 𝑠∗if 𝑞(𝜃)is decreasing in 𝜃(remember 

𝑞(𝜃)decreases with 𝜃= more vacancies → lower fill prob). Check signs carefully: since 
𝛼 decreases in 𝑠∗, 𝑞(𝛼)increases in 𝑠∗if 𝑞is decreasing in its argument. (Intuition: a higher 
cutoff means fewer posters → smaller θ → larger 𝑞(𝜃).  Also, the posterior 𝜋(𝐴 ∣
𝑠∗)concentrates on higher A when 𝑠∗is higher (because 𝑠∗is the signal value being conditioned 
on). So the expectation of 𝑆(𝐴)increases with 𝑠∗.  Combining these monotonicities: 𝐹(𝑠∗)is 

typically strictly increasing in 𝑠∗. At very low 𝑠∗the LHS is small (few posters, so small 
expected revenue), below 𝑐; at very high 𝑠∗the LHS is large. By continuity there is a unique 
root. 
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Figure 14  Equilibrium posting fraction with 𝑠 ∗ 

Source: Authors’ own calculations 

 

CONCLUSIONS 

The argmax correspondence BR𝑡(⋅)is nonempty, compact-valued and has measurable 
graph. By Kuratowski–Ryll-Nardzewski (and Aumann’s theory of measurable multifunctions) 
it admits measurable selectors.Because BR𝑡(𝑥)is an interval and endpoints are measurable 
and monotone (single-crossing), the endpoint functions ℓ𝑡(⋅), 𝑢𝑡(⋅)are measurable and 
nondecreasing, so choosing an endpoint gives a measurable monotone best-response 
selection.Using this measurable monotone best-response selector inside a Kakutani–type 
fixed-point argument yields existence of a measurable monotone Bayesian-Nash equilibrium. 
Combined with the ISD collapse/uniqueness argument, this gives existence and essential 
uniqueness for all sufficiently small 𝑣. Under the stated model and assumptions, in either limit 
𝜎𝑥 ↓ 0(private signals arbitrarily precise) or 𝜎𝑧 ↑ ∞(public signal uninformative), there exists a 

unique monotone equilibrium in which regime change occurs if 𝜃 ≤ 𝜃, 𝜃   =   1 −
𝑐

𝑏
∈ (𝜃

‾
, 𝜃‾).The 

threshold is obtained from the marginal indifference (knife-edge) condition 𝑏(1 − 𝜃) = 𝑐. This 
is the standard closed-form threshold appearing in global-game style coordination models.The 
Gaussian structure reduces equilibrium characterization to a fixed point of a cutoff operator 𝒢; 

the derivative/Lipschitz bound for 𝒢involves the factor 
𝜎𝑥

𝜎𝑧
2 ⋅ 𝜑(0) =

𝜎𝑥

𝜎𝑧
2 ⋅

1

√2𝜋
;the stated inequality 

𝜎𝑥

𝜎𝑧
2 ≤ √2𝜋guarantees contraction and hence a unique monotone equilibrium; and because 𝒢 is 

monotone and contracting, iterated elimination of strictly dominated strategies converges to 
that same unique profile. With no sterilization reserves fall quickly, probability of collapse is 
high,attack cutoff 𝑠∗ is low,loss of welfare or CB costs are low. With sterilization reserves are 

sustained, collapse probability is low, attack cutoff 𝑠∗ is low is high, fiscal costs are high.In 
Morris-Shin Version of DD(Diamond-Dybvig model): Without policy (φ=0) — runs occur 
frequently, even with moderate fundamentals.As φ increases, the bank’s threshold for failure 
𝜅(𝜃, 𝜑)rises, stabilizing expectations. Run probability declines monotonically → there is 
stronger backstop, fewer self-fulfilling runs.  The unique equilibrium emerges because 
private signals (σ>0) break coordination multiplicity.In DD version with heterogenous types of 
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depositors: As policy strength 𝜑 (e.g., insurance, central-bank backstop) increases, average 
run probability falls. Effect of heterogeneity 𝐻: If 𝐻 has mass at very low costs (many cheap 
withdrawers) — e.g., the mixed distribution with mass at 0 — the system becomes more 
fragile: equilibrium cutoffs 𝑠∗(𝜃)fall and run probabilities are higher at the same φ compared 

to a 𝐻 like Beta (2,2). s(θ) curves-Increasing 𝜑 raises 𝜅(𝜃, 𝜑), hence increases 𝑠 ∗ — 
depositors need worse signals to withdraw. Heterogeneity changes the numeric 𝑠 ∗ relative to 
analytic homogeneous benchmark; typically heterogeneity smooths and can lower s* if many 
cheap withdrawers exist. 
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