Variability assessment of metals distributions due to anthropogenic and geogenic impact in the lead-zinc mine and flotation „Zletovo” environs (moss biomonitoring)

  • Biljana Balabanova
  • Trajce Stafilov
  • Robert Šajn
  • Katerina Baceva

Abstract

Moss species (Hypnum cupressiforme, Scleropodium purum and Campthotecium lutescens) wereused as suitable sampling media for biomonitoring the origin of heavy metal pollution in the lead–zinc mine and flotationenviron near the town of Probištip. The 21 metals contents were determined by atomic emission spectrometrywith inductively coupled plasma (ICP–AES). Data processing was applied with combinations of multivariate statisticalmethods: factor analysis, principal component analysis and cluster analysis. The main anthropogenic markersin the investigated area were Pb and Zn (maximal values of 200 and 186 mg kg–1, respectively). The factor analysissingled out (in the increasing scale) the following associations: F1/D1: Fe < Mo < Pb < Na < Cd < Mg < Zn < Ag <Cu and F2/D2: Mn < Ni < K < P < Ba < Sr < Ca < As < Cr < Al < V < Li. The anthropogenic elements contents varyindependent from the moss species, but depending on the distancing from the pollution source, there are positive correlation.Long distance distribution from the emission source doesn’t occur.

Downloads

Download data is not yet available.

References

Aboal, J. R., Fernández, J. A., Boquete, T., Carballeira, A.: Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses?. Sci. Total. Environ., 408 (24), 6291 – 6297 (2010).

Anderson, J. M.: A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32 – 46 (2001).

Aničić, M., Tasić, M., Frontasyeva, M. V., Tomašević, M., Rajšić, S.: Active biomonitoring with wet and dry moss: A case study in an urban area. Environ. Chem. Lett., 7, 55 – 60 (2009).

Athar, M., Vohora, S.: Heavy metals and environment, New Age International publishers, New Delhi, 1995.

Balabanova, B., Stafilov, T., Bačeva, K., Šajn, R.: Biomonitoring of atmospheric pollution with heavy metals in the copper mine vicinity located near Radovıš, Republic of Macedonia. J. Environ. Sci. Health A, 45, 1504 – 1518 (2010).

Barandovski, L., Stafilov, T., Šajn, R., Frontasyeva, M. V., Bačeva, K.: Air pollution study in Macedonia using a moss biomonitoring technique, ICP-AES and AAS. Maced. J. Chem. Chem. En., 32 (1), 89 – 107 (2013).

Cattell, R. B.: The scree test for the number of factors. Multivar. Behav. Res., 1 (2), 245 – 276 (1966).

Ceburnis, U. D., Valiulis D.: Investigation of absolute metal uptake efficiency from precipitation in moss. Sci. Total. Environ., 226, 247 – 253 (1999a).

Ceburnis, D., Steinnes, E., Kvietkus, K.: Estimation of metal uptake efficiencies from precipitation in mosses in Lithuania. Chemosphere, 38 (2), 445 – 455 (1999).

Dołegowska, S., Migaszewski, M. Z., Michalik, A.: Hylocomium splendens (Hedw.) B. S. G. and Pleurozium schreberi (Brid.) Mitt. as trace element bioindicators. Statistical comparison of bioaccumulative properties. J. Environ. Sci., 25 (2), 340 – 347 (2013).

Fernández, J. Á., Aboal, J. A., Real, C., Carballeira, A.: A new moss biomonitoring method for detecting sources of small scale pollution. Atmos. Environ., 4, 2098 – 2110 (2007).

Filzmoser, P., Garrett, R. G., Reimann, C.: Multivariate outlier detection in exploration geochemistry. Computers & Geosciences, 31 (5), 579 – 587 (2005).

Fraley, C., Raftery, A. E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal, 41 (8), 578 – 588 (1998).

Golub G. H., Van Loan C. F.: Matrix computation. 4th ed., The Johns Hopkins University Press, USA, 2013.

Harmens, H., Norris, D. A., Steinnes, E., Kubin, E., Piispanen, J., Alber, R., et al.: Mosses as biomonitors of atmospheric

heavy metal deposition: Spatial patterns and temporal trends in Europe. Environ. Pollut., 158, 3144 – 3156 (2010).

Harmens, H., Norris, D., Mills, G., Aboal J., et al.: Heavy metals and nitrogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe, Eds.: Harmens, H. and Norris. D., ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology Environment Centre Wales, Bangor, UK, 2013.

Lazarevski, A.: Climate in Macedonia, Kultura, Skopje, 1993 (in Macedonian).

Markert, B. A., Breure, A. M., Zechmeister, H. G.: Definitions, Strategies, and Principles for Bioindication/Biomonitoring of the Environment; Elsevier Press, Oxford, 2003.

Onianwa, P. C.: Monitoring atmospheric metal pollution: are view of the use of mosses as indicators. Environ. Monit. Assess., 71 (1), 13 – 50 (2001).

Reimann, C., Filzmoser, P., Garrett, R. G., Factor analysis applied to regional geochemical data: Problems and possibilities. Appl. Geoch., 17, 185–206 (2002).

Serafimovski, T., Dolenec, T., Tasev, G.: New data concerning the major ore minerals and sulphosalts from the Pb-Zn Zletovo mine, Macedonia. RMZ – Materials and Geoenvironment, 52, 535–548 (2006).

Tuba, Z., Csintalanm, Z., Nagy, Z., Szente, K., Takács, Z.: Sampling of terricolous lichen and moss species for trace element analysis, with special reference to bioindication of air pollution, In: Markert B. (Ed), Environmental sampling for trace analysis, Wiley Press, Germany, 2007.

Zechmeister, H. G., Grodzinska, K., Szarek-Qukaszewska, G.: Bryophytes, In: Markert, B. A., Breure, A. M., Zechmeister, H. G. (Eds.), Bioindicators and Biomonitors, Elsevier Science Ltd., Amsterdam, 2003.

Žibret, G. and Šajn, R.: Hunting for geochemical associations of elements: factor analysis and self-organizing maps. Math. Geosci., 42, 681 – 703 (2010).

Published
2014-12-29
How to Cite
Balabanova, B., Stafilov, T., Šajn, R., & Baceva, K. (2014). Variability assessment of metals distributions due to anthropogenic and geogenic impact in the lead-zinc mine and flotation „Zletovo” environs (moss biomonitoring). Geologica Macedonica, 28(2), pp. 101-114. Retrieved from https://js.ugd.edu.mk/index.php/GEOLMAC/article/view/918