MEDIA ETHICS AND AI-GENERATED IMAGERY
DOI:
https://doi.org/10.46763/BSSR252626307aAbstract
The impact of artificial intelligence (AI) on human society is indisputable. This paper explores AI's influence on the media industry, with a particular focus on understanding the effects and implications of generative imagery and other AI integrations across various dimensions of the media landscape. A methodical literature review highlights key themes, including content creation, curation, visual media, privacy concerns, and evolving media ethics. The findings demonstrate that AI-generated imagery serves as a powerful creative tool, yet remains in constant evolution and demands a well-defined legal and ethical framework for responsible use in journalism and media. The results also emphasize the need for professional guidance, continuous skill development, and the implementation of ethical AI practices within the industry.
Downloads
References
1. Abdus Salam, K. A. (2022). Inspiration: A mirror of copy or not? International Journal of Law, Management & Humanities, 5(6), 276–284. https://doi.org/10.10000/IJLMH.113776
2. Abrashi, G., & Reçi, A. (2023). Motivation of employees in the public sector through organizational communication: Case study of Vala Mobile Company, Kosovo. Journal of Human Research in Rehabilitation, 13(2), 313–320. https://doi.org/10.21554/hrr.092314
3. Andersen, M. (2023a). Artists vs. AI: The battle over digital creativity. Journal of Intellectual Property and Emerging Technologies, 12(1), 45–60.
4. Andersen, M. (2023b). Artists vs. AI: The fight for control of digital creativity. Journal of Digital Ethics, 5(2), 34–49.
5. Baker, M. A. (2024). The spread of AI-generated misinformation. https://www.researchgate.net/publication/379643593
6. Baetens, J., & Sánchez-Mesa, D. (2024). Photojournalism and beyond. In J. Bruhn, A. López-Varela Azcárate, & M. de Paiva Vieira (Eds.), The Palgrave handbook of intermediality (pp. 955–977). Palgrave Macmillan.
7. Barqawi, L., & Abdallah, M. (2024). Copyright and generative AI. Journal of Infrastructure, Policy and Development, 8(8), Article 6253. https://doi.org/10.24294/jipd.v8i8.6253
8. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623).
9. Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. In Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency (pp. 149–159).
10. Bolter, J. D. (2023). AI generative art as algorithmic remediation. IMAGE: The Interdisciplinary Journal of Image Sciences, 37(1), 195–207.
11. Bontridder, N., & Poullet, Y. (2021). The role of artificial intelligence in disinformation. Data & Policy, 3, Article e32. https://doi.org/10.1017/dap.2021.20
12. Boté-Vericad, J.-J., & Vállez, M. (2022). Image and video manipulation: The generation of deepfakes. https://doi.org/10.3145/indocs.2022.8
13. Brantner, C., & Saurwein, F. (2021). Covering technology risks and responsibility: Automation, artificial intelligence, robotics, and algorithms in the media. International Journal of Communication, 15, 5074–5098.
14. Califano, G., & Spence, C. (2024). Assessing the visual appeal of real and AI-generated food images. Food Quality and Preference, 116, Article 105149. https://doi.org/10.1016/j.foodqual.2024.105149
15. Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., & Erlingsson, Ú. (2023). Extracting training data from diffusion models. arXiv. https://arxiv.org/abs/2301.13188
16. Carlson, M. (2019). News algorithms, photojournalism, and the assumption of mechanical objectivity in journalism. Digital Journalism, 7(8), 1117–1133. https://doi.org/10.1080/21670811.2019.1601577
17. Chesney, R., & Citron, D. K. (2019a). Deep fakes: A looming challenge for privacy, democracy, and national security. California Law Review, 107(6), 1753–1819. https://doi.org/10.2139/ssrn.3213954
18. Chesney, R., & Citron, D. K. (2019b). Deepfakes and the new disinformation war. Foreign Affairs, 98(1), 147–155.
19. Coeckelbergh, M. (2023). The work of art in the age of AI image generation. Journal of Human–Technology Relations, 1(1), 1–13. https://doi.org/10.59490/jhtr.2023.1.7025
20. Dahlgren, P. M. (2021). A critical review of filter bubbles and a comparison with selective exposure. Nordicom Review, 42(1), 15–33. https://doi.org/10.2478/nor-2021-0002
21. European Parliamentary Research Service. (2020). The ethics of artificial intelligence: Issues and initiatives.
22. Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., & Vayena, E. (2018). AI4People—An ethical framework for a good AI society. Minds and Machines, 28(4), 689–707.
23. Forja-Pena, T., García-Orosa, B., & López-García, X. (2024). The ethical revolution in digital journalism. Communication & Society, 37(3), 237–254. https://doi.org/10.15581/003.37.3.237-254
24. Frey, C. B., & Osborne, M. A. (2017). The future of employment. Technological Forecasting and Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019
25. García-Avilés, J.-A. (2021). An inquiry into the ethics of innovation in digital journalism. In M. Luengo & S. Herrera-Damas (Eds.), News media innovation reconsidered. https://doi.org/10.1002/9781119706519.ch1
26. Gynnild, A. (2019). Visual journalism. In The international encyclopedia of journalism studies.
27. Hagendorff, T. (2020). The ethics of AI ethics. Minds and Machines, 30, 99–120. https://doi.org/10.1007/s11023-020-09517-8
28. Hall, S. (2013). The spectacle of the other. In S. Hall, J. Evans, & S. Nixon (Eds.), Representation (2nd ed., pp. 215–275). Sage.
29. Hausken, L. (2024). Photorealism versus photography. Journal of Aesthetics & Culture, 16(1). https://doi.org/10.1080/20004214.2024.2340787
30. Kress, G., & van Leeuwen, T. (2021). Reading images: The grammar of visual design (3rd ed.). Routledge.
31. Laba, N. (2024). Engine for the imagination? Media, Culture & Society, 46(8), 1599–1620. https://doi.org/10.1177/01634437241259950
32. Milmo, D. (2024, January 8). ‘Impossible’ to create AI tools like ChatGPT without copyrighted material. The Guardian.
33. Newman, N., Fletcher, R., Robertson, C. T., Eddy, K., & Nielsen, R. K. (2023). Reuters Institute digital news report 2023. Reuters Institute for the Study of Journalism.
34. Shi, Y., & Sun, L. (2024). How generative AI is transforming journalism. Journalism and Media, 5, 582–594. https://doi.org/10.3390/journalmedia5020039
35. Thomson, T. J., Thomas, R. J., & Matich, P. (2024). Generative visual AI in news organizations. Digital Journalism. https://doi.org/10.1080/21670811.2024.2331769
36. U.S. Copyright Office. (2023). Copyright registration guidance: Works containing material generated by artificial intelligence.
Downloads
Published
Issue
Section
License
Permissions
Authors are expected to obtain permission from copyright holders for reproducing any illustrations, tables, figures or lengthy quotations previously published elsewhere. BSSR will not be held accountable for any copyright infringement caused by the authors.
Copyright
The content offered in the BSSR remains the intellectual property of the authors and their publishers respectively. University “Goce Delcev”- Shtip, R. Macedonia and BSSR keap the right to promote and re-publish the texts.
