THE INFLUENCE OF DIFFERENT CLIMATIC TYPES ON THE NUMBER OF Bacillus spp. ISOLATED FROM SOIL IN NORTH MACEDONIA

  • Natalija Atanasova-Pancevska
  • Elena Usta Petrova
  • Nikola Radmanovik
  • Ognen Boskovski
  • Edi Frcovski
  • Hristijan Premcevski
  • Sofija Kostandinovska

Abstract

Soil microorganisms play an important role in the biogeochemical processes of various elements vital to plant growth and animal life. Understanding and predicting the effects of climate change on soil microorganisms and their role in the ecosystem is a major challenge and provides an opportunity to focus research efforts on one of the most pressing problems facing our planet. Bacillus is a widely distributed genus with 347 species and 7 subspecies known to date. Members of this genus are capable of forming spores that are resistant to extreme heat, bactericidal agents and chemical disinfectants. Many Bacillus species are used in medicine and agriculture to produce antibiotics and also serve as probiotics in foods. Climate, as an abiotic factor, influences soil microorganisms by controlling the rate of soil formation and the chemical composition of the soil. Most soil microbiology studies focus on the diversity and abundance of soil microorganisms and on documenting the effects of environmental changes on these microorganisms. This new research trend can be applied to Bacillus spp. from soils in North Macedonia in the three climate types represented, mainly due to the climatic differences between them. This research focuses on the determination of soil geochemical parameters and microbiological analyses. A total of 36 strains of Bacillus spp. were isolated, 6 of which showed antimicrobial activity against certain test microorganisms. According to the results, it was also found that the diversity of Bacillus species changes depending on the soil microenvironment under the influence of different climatic conditions.

References

Allison, S.D., Wallenstein, M.D. & Bradford, M.A. (2010) Soil carbon response to warming dependent on microbial physiology. Nature Geosci 3, 336-340.

Bardgett, R.D., Freeman, C. & Ostle, N.J. (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISMEJ 2, 805-814.

Bradford, M.A., Davies, C.A., Frey, S.D., Maddox, T.R., Melillo, J.M., Mohan, J.E., Reynold J.F., Tresder, K.K., Wallenstein, M.D. (2008). Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11, 1316-1327.

Castro, H.F., Classen, A.T., Austin, E.E., Norby, R.J., Schadt, C.W. (2010). Soil microbial community responses to multiple experimental climate change drivers. Appl Env Microbiol 76, 999-1007.

Cavicchioli, R., Ripple, W.J., Timmis, K.N., Azam, F., Bakken, L.R., Baylis, M., Behrenfeld, M.J., Boetius, A., Boyd, P.W., Classen, A.T., Crowther, T.W., Danovaro, R., Foreman, C.M., Huisman, J., Hutchins, D.A., Jansson, J.K., Karl, D.M., Koskella, K.B., Welch, D.B.M., Martiny, J.B.H., Moran, M.A., Orphan, V.J., Reay, D.S., Remais, J.V., Rich, V.I., Singh, B.K., Stein, L.Y., Stewart, F.J., Sullivan, M.B., van Oppen, M.J.H., Weaver, S.C., Webb, E.A., Webster, N.S. (2019). Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17,569–586.

Classen, A., Sundqvist, M., Henning, J., Newman, G.S., Moore, J.A.M., Cregger M.A., Moorhead, L.C., Patterson, C.M. (2015). Direct and indirect ef fects of climate change on soil microbial and soil microbial plant interactions: What lies ahead?. Ecosphere 6, 1–21.
Cordero, O.X. & Datta, M.S. (2016). Microbial interactions and community assembly at microscale. Curr. Opin. Microbiol. 31, 227–234.

Delgado-Baquerizo, M., Maestre, F., Escolar, C., Gallardo, A., Ochoa, V., Gozalo, B., Prado-Comesaña, A. (2014). Direct and in direct impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J Ecol 102, 1592–605.

Fierer, N. & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631.

Fierer, N. & Schimel, J.P. (2003). A Proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67, 798-805.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Bloh, W.V., Brokvin, V., Cadule, P., Doney, S.C., Eby, M., Fung, Y. (2006). Climate–carbon cycle feedback analysis: Results from the C4 MIP model intercomparison. J Clim 19,3337-3353.

Hooper, D.U., Chapin, F.S., III, Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., Wardle, D.A. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75, 3–35.

Schimel, J. & Schaeffer, S. (2012). Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348.

Steinweg, J.M., Plante, A.F., Conant, R.T., Paul, E.A., Tanaka, D.L. (2008). Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol Biochem 40, 2722-2728.

Thompson, L. R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., Tripathi, A., Gibbons, S.M., Ackermann, G., Navas-Molina, J.A., Mirarab, S., Xu, Z.Z., Jiang, L., Haroon, M.F., Kanbar, J., Zhu, Q., Song, S.J., Kosciolek, T., Bokulich, N.A., Lefler, J., Brislawn, C.J., Humphrey, G., Owens, S.M., Hampton-Marcell, J., Breg-Lyons, D., McKenzie, V., Fierer, N., Fuhrman, J.A., Clauset, A., Stevens, R.L., Shade, A., Pollard K.S., Goodwin, K.D., Jansson, J.K., Gilbert, J.A., Knight, R. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551,457–463.

Tyagi, S., Singh, R., Javeria, S. (2014). Effect of climate change on plant-microbe interaction: An overview. European Journal of Molecular Biotechnology 5, 149-156.

Weiman, S. (2015). Microbes help to drive global carbon cycling and climate change. Microbe Mag 10,233-238.

Whitaker, J., Ostle, N., Nottingham, A.T., Ccahuana, A. Salina, N., Bardgett, R.D., Meir, P., McNamara, N.P. (2014). Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradi ent. J Ecol 102, 1058–7.
Published
2023-08-10