OLEOGELS – AN ALTERNATIVE TO REPLACE ANIMAL FATS IN MEAT PRODUCTS
Abstract
The changes in lifestyle of modern consumers have increased demand for healthier meat products. Animal fat, which is an integral part of meat products, is directly related to the occurrence of chronic diseases and overweight. Polyunsaturated vegetable oils are healthier for human consumption, but their liquid consistency can pose a problem when directly applied in the technological process. Application of oleogels, obtained with innovative technology for gelling vegetable oils using gelators, is a new approach to create healthier meat products with an improved fatty acid profile. This paper aims to review the different approaches for obtaining oleogels and the latest trends for their use in meat products.
References
Agregán, R., Franco, D., Carballo, J., Tomasevic, I., Barba, F.J., Gómez, B., Muchenje, V. & Lorenzo, J.M. (2018). Shelf-life study of healthy pork liver pâté with added seaweed extracts from Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Food Res. Int.,112, 400–411.
Aguilar-Zárate, M., Macias-Rodriguez, B., Toro-Vazquez, J. & Marangoni, A. (2019). Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydr. Polym., 205, 98–105.
Badar, I. H., Liu, H., Chen, Q., Xia, X., & Kong, B. (2021). Future trends of processed meat products concerning perceived healthiness: a review. Comprehensive Reviews in Food Science and Food Safety., 20(5), 4739-4778.
Barbut, S., Tiensa, B.E., Marangoni, A.G., Partial fat replacement in liver pâté using canola oil organogel, LWT - Food Science and Technology, https://doi.org/10.1016/ j.lwt.2020.110428.
de Souza, R.J., Mente, A., Maroleanu, A., Cozma, A.I., Ha, V., Kishibe, T., Uleryk, E., Budylowski, P., Schunemann, H. & Beyene, J. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all-cause. mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ., 351:h3978., doi:10.1136/bmj.h3978.
Espert, M., Hernández, M.J., Sanz, T. & Salvador, A. (2021). Reduction of saturated fat in chocolate by using sunflower oil-hydroxypropyl methylcellulose based oleogels. Food Hydrocolloids., 120, 106917.
Feichtinger, А. & Scholten, E. (2020). Preparation of Protein Oleogels: Effect on Structure and Functionality. Foods., 9, 1745.
Ferro, A.C., de Souza Paglarini, C., Rodrigues Pollonio, M.A. & Lopes Cunha, R. (2021). Glyceryl monostearate-based oleogels as a new fat substitute in meat emulsion. Meat Science.,174,108424.
Franco, D., Martins, A., J., López-Pedrouso, M., Cerqueira, M. A., Purriños, L., Pastrana, L. M., Vicente, A. A., Zapata, C. & Lorenzo, J. M. (2020). Evaluation of Linseed Oil Oleogels to Partially Replace Pork Backfat in Fermented Sausages. J. Sci. Food Agric.,100(1), 218–224.
Gómez-Estaca, J., Herrero, A.M., Herranz, B., Álvarez, M.D., Jiménez-Colmenero, F. & Cofrades, S. (2019). Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocoll., 87(1), 960–969.
Han, W., Chai, X., Liu, Y., Xu, Y. & Tan, C. (2021). Crystal network structure and stability of beeswax-based oleogels with different polyunsaturated fatty acid oils. Food Chemistry, 381(1), 131745.
Hooper, L., Martin, N., Jimoh, O.F., Kirk, C., Foster, E. & Abdelhamid, A.S. (2020). Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev., 8(8), CD011737.
Jeong, S., Lee, S. & Oh, I. (2021). Development of Antioxidant Fortified Oleogel and Its Application as a Solid Fat Replacer to Muffin. Foods,10, 3059.
Kouzounis, D., Lazaridou, A., & Katsanidis, E. (2017). Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Science,130, 38–46.
López-Pedrouso M., Lorenzo J.M., Gullón B., Campagnol P.C.B. & Franco (прзно место во вишок) D. (2021). Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Curr. Opin. Food Sci., 40, 40–45.
Li L., Liu G. & Lin, Y. (2021). Physical and bloom stability of low-saturation chocolates with oleogels based on different gelation mechanisms. LWT – Food Science and Technology,140, 110807.
Lim, J., Hwang, H.S. & Lee, S. (2017). Oil-structuring characterization of natural waxes in canola oil oleogels: rheological, thermal, and oxidative properties. Appl Biol Chem., 60(1), 17–22.
Lima, S.L.T., Freire da Costa, G., Alves, R do N., Leal de Araujo, D. C., Gonçalves da Silva, F.G., Ribeiro, L.N., Vieira de Figueiredo, F.C. & Oliveira de Adreade, R. (2022). Vegetable oils in emulsified meat products: a new strategy to replace animal fat. Food Science and Technology, 42, e103621.
Martins, А.Ј., Lorenzo, J.M., Franco, D., Pateiro, M., Domínguez, R., Munekata, P.E.S., Pastrana, L.M., Vicente, A.A., Cunha, R.L. & Cerqueira, M.A. (2020). Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes. Gels, 6(2), 17.
Martins, A.J., Vicente, A.A., Pastrana, L.M., Cerqueira, M.A. (2020). Oleogels for development of health-promoting food products. Food Sci. Hum. Wellness, 9, 31–39.
Mozaffarian, D., Rosenberg, I. & Uauy, R. (2018). History of modern nutrition science-implications for current research, dietary guidelines, and food policy. BMJ, 361, k2392.
Oliveira, A. A. N., Mesquita, E. F. M. & Furtado, A. A. L. (2021). Use of bacterial celulose as a fat replacer in emulsified meat products: review. Food Sci. Technol., Campinas, v42, e42621.
Patel, A. R. (2015). Alternative Routes to Oil Structuring. SpringerBriefs in Food, Health and Nutrition,15–28.
Pehlivanoğlu, H., Demirci, M., Toker, O.S., Konar, N., Karasu, S & Sagdic, O. (2018). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition, 58,1330–1341.
Perta-Crisan, S., Ursachi, C.S., Chereji, B.D. & Munteanu, F.D. (2023). Oleogels —Innovative Technological Solution for the Nutritional Improvement of Meat Products. Foods, 12, 131.
Pintado, T. & Cofrades, S. (2020). Quality Characteristics of Healthy Dry Fermented Sausages Formulated with a Mixture of Olive and Chia Oil Structured in Oleogel or Emulsion Gel as Animal Fat Replacer. Foods, 9(6), 830.
Ruiz Martinez, M.A., Munoz de Benavides, M., Morales Hernandez,M.E. & Gallardo Lara, V.(2003). Influence of the concentration of a gelling agent and the type of surfactant on the rheological characteristics of oleogels. Farmaco, 58,1289-1294.
Schwingshackl, L., Heseker, H., Kiesswetter, E. & Koletzko, B. (2022). Dietary fat and fatty foods in the prevention of non-communicable diseases: A review of the evidence,Trends in Food Science & Technology, 128, 173-184.
Tarté, R., Paulus, J. S., Acevedo, N. C., Prusa, K. J., & Lee, S. (2020). High-oleic and conventional soybean oil oleogels structured with rice bran wax as alternatives to pork fat in mechanically separated chicken-based bologna sausage. LWT - Food Science and Technology, doi: https://doi.org/10.1016/j.lwt.2020.109659.
Totosaus-Sanchez, А. (2008). Poultry: Poultry Pâté. Food Processing: Principles and Applications, 439 – 445, doi:10.1002/9780470290118.ch26.
Wang, Q., Espert, M., Larrea, V., Quiles, A., Salvador, A. & Sanz, T. (2023). Comparison of different indirect approaches to design edible oleogels based on cellulose ethers. Food Hydrocolloids, 34, 108007.
Wolfer, T. L.; Acevedo, N. C.; Prusa, K. J.; Sebranek, J. G.; Tarté, R. (2018). Replacement of Pork Fat in Frankfurter-Type Sausages by Soybean Oil Oleogels Structured with Rice Bran Wax. Meat Sci., 145, 352–362.
Xu, H.J., LiT., Zhang, H.X., Shi, C.H., Cao, J.Q. & Zhang, X.R. (2022). The application of oleogels in food products: Classification, preparation, and characterization. Acta Alimentaria, 5(4), 462–478.
Zampouni, K., Soniadis, A., Dimakopoulou-Papazoglou, D., Moschakis, T., Biliaderis, C. G. & Katsanidis, E. (2022). Modified fermented sausages with olive oil oleogel and NaCl–KCl substitution for improved nutritional quality. Lwt., 158, 113-172.