RADIONUCLIDES IN THE FOOD CHAIN: FOCUS ON ANIMAL - DERIVED FOOD
DOI:
https://doi.org/10.46763/Keywords:
radionuclides, natural and anthropogenic sources, animal-derived food, radioactivity, radiological safetyAbstract
The paper presents an analytical overview of the occurrence, movement, and accumulation of both natural and anthropogenic radionuclides in food of animal origin. The research encompasses the main pathways through which these substances enter animal organisms, together with the environmental and agricultural factors influencing their distribution in soil, vegetation, and animal tissues such as meat, milk, eggs, and fish during the period 1989 to 2025. The review was conducted based on a literature search performed in the Elsevier, Hinari, PubMed, and other relevant scientific databases. The study focuses on isotopes including uranium-238, thorium-232, potassium-40, cesium-137, and strontium-90 as key indicators of naturally occurring and technologically induced radioactivity within the biosphere. The analysis demonstrates the interconnection between geological, climatic, and agricultural conditions that determine the levels and variability of radionuclides in animal-derived food. It was established that radionuclide concentrations in North Macedonia fall within internationally accepted limits and correspond with values observed in other European countries. The study emphasizes the importance of continuous monitoring of both natural and anthropogenic sources of radioactivity to enable timely detection of fluctuations in radiological balance and to ensure the long-term safety of food and public health protection.
References
Ababneh, Z., Alyassain, Q., Aljarrah, A. M., & Ababneh, K. M. (2010). Measurement of natural and artificial radioactivity in powdered milk consumed in Jordan and estimates of the corresponding annual effective dose. Radiation Protection Dosimetry, 138(3), 278–283.
Ali, Y. F., Cucinotta, F. A., Ning-Ang, L., & Zhou, G. (2020). Cancer risk of low-dose ionizing radiation. Frontiers in Physiology, 8, 234
Alsaffar, M. S., Jaafar, M. S., Kabir, N. A., & Ahmad, N. (2015). Distribution of 226Ra, 232Th, and 40K in rice plant components and physicochemical effects of soil on their transportation to grains. Journal of Radiation Research and Applied Sciences. 8(3), 300-310
Ambrosino, F., D’Amore, M., Caputo, D., & Perna, G. (2023). Zeolites identification for wastewater radionuclides removal in the decommissioning of a former Italian nuclear power plant. European Physical Journal Plus, 138(10), 4491.
Angeleska, A., Crceva Nikolovska, R., Dimitrieska Stojkovik, E., Blagoevska, K., Dimzoska Stojanovska, B., Uzunov, R., & Angelovski, L. (2022a). Activity concentration of natural radionuclides in chicken feeds in the Republic of North Macedonia. Krmiva (Online), 63(1), 19–23.
Angeleska, A., Crceva Nikolovska, R., Dimitrieska Stojkovik, E., Stojanovska Dimzoska, B., Uzunov, R., & Angelovska, A. (2022b). Determination of radionuclide concentration in milk samples consumed in the Republic of North Macedonia and population dose rate estimates. Journal of Agriculture and Plant Sciences, 20(1), 9-16
Asghar, Z., Arshad, M. S., Khalid, W., Saeed, F., Imran, A., & Suleria, H. A. R. (2023). Impact of gamma irradiation and poppy seed extract on quality and storage stability of beef patties. International Journal of Food Properties, 26(1), 1645–1662.
Assembly of the Republic of Macedonia, Law on Ionizing Radiation Protection and Safety, Official Gazette of the Republic of Macedonia, No. 48 (2002), 135 (2007), 53 (2011).
Beresford, N. A., & Howard, B. J. (2011). An overview of the transfer of radionuclides to farm animals and potential countermeasures of relevance to Fukushima releases. Integrated Environmental Assessment and Management, 7(3), 382–384.
Berthiaume, A. (2023). Radionuclide contamination in Canada: A scoping review. Heliyon, 9 (6), e16602.
Bilgici Cengiz, G. (2019). Transfer factors of 226Ra, 232Th and 40K from soil to pasture-grass in the northeastern of Turkey. Journal of Radioanalytical and Nuclear Chemistry, 319(1), 83–89.
Bundesamt für Strahlenschutz (BfS). (2003). Radiologische Daten Deutschlands: Jahresbericht des Bundesamtes für Strahlenschutz 2003. Salzgitter, Germany: Bundesamt für Strahlenschutz.
Carvalho, F., P. (1995) 210Po and 210Pb intake by the Portuguese population: the contribution of seafood in the dietary intake of 210Po and 210Pb. Health Phys, 69(4), 469-480
Carvalho, C., Anjos, R. M., Mosquera, B., Macario, K., & Veiga, R. (2006). Radiocesium contamination behavior and its effect on potassium absorption in tropical or subtropical plants. Journal of Environmental Radioactivity, 86(2), 241–250.
Carvalho, F. P. (2018). Radionuclide concentration processes in marine organisms: A comprehensive review. Journal of Environmental Radioactivity. 186, 124-130
Casacuberta, N., Masqué, P., Garcia-Orellana, J., Bruach, J. M., Anguita, M., Gasa, J., ... & Garcia-Tenorio, R. (2009). Radioactivity contents in dicalcium phosphate and the potential radiological risk to human populations. Journal of Hazardous materials, 170(2-3), 814-823.
Cinelli, G., De Cort, M., & Tollefsen, T. (Eds.). (2019). European atlas of natural radiation. Publications Office of the European Union.
Czarnecki, S., & Düring, R.-A. (2015). Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany. Soil, 1, 23–33.
Da Silva, A., Cabrera, M. C., Olivero, R., del Puerto, M., Terevinto, A., & Saadoun, A. (2024). The incorporation of chia seeds (Salvia hispanica L.) in the chicken diet promotes the enrichment of meat with n-3 fatty acids, particularly EPA and DHA. Applied Food Research, 4(1), Article 100416.
Desideri, D., Roselli, C., Forini, N., Rongoni, A., Meli, M. A., & Feduzi, L. (2014). Alpha and gamma spectrometry for the radiological characterization of animal feed. Microchemical Journal, 116, 41–46.
El-Araby, E.H, Shabaan, D.H. (2024). Inspection of radioactive nuclei of foodstuffs in Saudi Arabia using a NaI(tl) scintillation detector. Cogent Food &Agriculture, 10(1), 2405236.
Esan, A. O., Oladipo, M. O. A., Obed, R. I., & Balogun, F. A. (2022). Assessment of natural radionuclides in soil and the associated radiological risk in selected areas. Environmental Earth Sciences, 81(2), 1–13.
European Parliament & Council. (2004a). Regulation (EC) No 852/2004 of 29 April 2004 on the hygiene of foodstuffs.
European Parliament & Council. (2004b). Regulation (EC) No 853/2004 of 29 April 2004 laying down specific hygiene rules for food of animal origin.
European Commission. (2020). Commission Implementing Regulation (EU) 2020/1158 on the conditions governing imports of food and feed originating in third countries following the accident at the Chernobyl nuclear power station. Official Journal of the European Union.
European Commission. (2023). EU-Japan Summit: Commission lifts the Fukushima restrictions on food imports. Brussels, Belgium. https://ec.europa.eu/commission/presscorner/detail/en/ip_23_3781
Federal Committee for Labor, Health and Social Security. (1987). The level of radioactive contamination of the human environment and population irradiation in Yugoslavia in 1986 due to the accident in nuclear power station in Chernobyl. Belgrade: Federal Committee for Labor, Health and Social Security.
Food and Agriculture Organization of the United Nations. (2020). The State of World Fisheries and Aquaculture. FAO: Rome, Italy. https://www.fao.org/3/ca9229en/ca9229en.pdf
Gagnaire, B., Adam-Guillermin, C., Bouron, A., & Lestaevel, P. (2011). The effects of radionuclides on animal behavior. Reviews of Environmental Contamination and Toxicology, 210, 35–58.
Gradaščević, N., Samek, D., & Saračević, L. (2015). The impact of natural radioactivity in animal products of ruminants on the annual effective dose of population. Veterinaria. 64(2), 55-59
Haase, G., Vagt, T., & Fritsche, J. (2021). Monitoring environmental radionuclide activity of the incident-relevant radionuclides cesium-137 and strontium-90 in animal feed and foodstuffs consumed in Germany. Journal of Consumer Protection and Food Safety, 16(1), 97–101.
Harada, K. H., Niisoe, T., Imanaka, M., Takahashi, T., Amako, K., Fujii, Y., Kanameishi, M., Ohse, K., Nakai, Y., Nishikawa, T., Saito, Y., Sakamoto, H., Ueyama, K., Hisaki, K., Ohara, E., Inoue, T., Yamamoto, K., Matsuoka, Y., Ohata, H., Toshima, K., Okada, A., Sato, H., Kuwamori, T., Tani, H., Suzuki, R., Kashikura, M., Nezu, M., Miyachi, Y., Arai, F., Kuwamori, M., Harada, S., Ohmori, A., Ishikawa, H., & Koizumi, A. (2014). Radiation dose rates now and in the future for residents neighboring restricted areas of the Fukushima Daiichi Nuclear Power Plant. Proceedings of the National Academy of Sciences of the United States of America, 111(10), E914–E923.
Heldal, H. E., et al. (2019). Natural and anthropogenic radionuclides in Norwegian farmed Atlantic salmon (Salmo salar). Journal of Environmental Radioactivity, 205-206, 42-47
Hernandez, F., Hernandez-Armas, J., Catalan, A., Fernandez-Aldecoa, J. C., & Landeras, M. I. (2004). Activity concentrations and mean effective dose of foodstuffs on the island of Tenerife, Spain. Radiation Protection Dosimetry, 111(2), 205-210
Hofmann, P., Achatz, M., Behrend, K., Berg, T., Busse, C., Guttmann, A., Hummrich, H., Lindtner, O., Lucks, C., Manteufel, L., Rast, M., Sarvan, I., Schmidt, B., Schmidt, K., Scholtysik, C., & Walther. (2024). The first German total diet study: Analytical techniques to identify natural radionuclides in food samples. Journal of Radioanalytical and Nuclear Chemistry, 333, 2449–2460.
Howard, B. J., Beresford, N. A., Barnett, C. L., & Fesenko, S. (2009). Quantifying the transfer of radionuclides to food products from domestic farm animals. Journal of Environmental Radioactivity, 100(9), 767-73
Howard, B. (2021). Environmental pathways of radionuclides to animal products in different farming and harvesting systems. In I. Naletoski, A. G. Luckins, & G. Viljoen (Eds.), Nuclear and radiological emergencies in animal production systems, preparedness, response and recovery 53-105
International Atomic Energy Agency (IAEA). (1989). Measurement of radionuclides in food and the environment (Technical Report Series No. 295). International Atomic Energy Agency.
International Atomic Energy Agency (IAEA). (2013a). Actions to protect the public in an emergency due to severe conditions at a light water reactor (EPR-NPP public protective actions). Vienna, Austria: IAEA.
International Atomic Energy Agency (IAEA). (2023). Exposure due to radionuclides in food other than during a nuclear or radiological emergency. Part 1: Technical Material. Safety Reports Series No. 114. Vienna: IAEA.
Jananee, B., Rajalakshmi, A., Thangam, V., Bharath, K. M., & Sathish, V. (2021). Natural radioactivity in soils of Elephant Hills, Tamil Nadu, India. Journal of Radioanalytical and Nuclear Chemistry, 329, 1261–1268
Jayasinghe, C., Pinnawala, U. C., Rathnayaka, T., & Waduge, V. (2020). Annual committed effective dosage from natural radionuclides by ingestion of local food growing in mineral mining area, Sri Lanka. Environmental Geochemistry and Health, 42(7), 2205-2214.
Klurfeld, D. M. (2018). What is the role of meat in a healthy diet? Animal Frontiers, 8(3), 5–10.
Khandaker, M. U., Amin, Y. M., & Bradley, D. A. (2018). Correlation between lithology and environmental radioactivity: A review. Journal of Environmental Radioactivity, 182, 1–9.
Lee, K. M., & Herrman, T. J. (2024). Investigation and assessment of natural radioactivity in commercial animal feeds in Texas. Food Additives & Contaminants: Part A, 41(1), 33-44.
Liu, Y., Zhou, W., Gao, B., Zheng, Z., Chen, G., Wei, Q., & He, Y. (2021). Determination of radionuclide concentration and radiological hazard in soil and water near the uranium tailings reservoir in China. Environmental Pollution and Bioavailability, 33, 174–183.
Mihaljev, Ž., Popov, N., Kartalović, B., Jakšić, S., & Živkov-Baloš, M. (2019). Activity of natural radionuclides in animal feed. Ecological Movement of Novi Sad (Serbia).
Mohammad, R. E. A., Veerasingam, S., Suresh, G., Rajendran, S., Sadasivuni, K. K., Ghani, S., & Al-Khayat, F. (2025). Tackling environmental radionuclides contamination: A systematic review of chemical, biological, and physical remediation strategies. Chemical Engineering Journal Advances, 23, 100802.
Nakov, D., Trajchev, M., Angjeleska, A., Belichovska, K., Pacinovski, N. (2016). Determination of natural radionuclide in pig production chain in Macedonia by gamma spectrometry. AGROFOR International Journal, Volume 1. Issue No. 1. pp. 151-156.
Obrador, E., Salvador-Palmer, R., Villaescusa, J. I., Gallego, E., Pellicer, B., Estrela, J. M., & Montoro, A. (2022). Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants, 11(6), 1098.
Olobatoke, R. Y., & Mathuthu, M. (2015). Radionuclide exposure in animals and the public health implications. Turkish Journal of Veterinary and Animal Sciences, 39, 381–388.
Olurin, T.O. (2024). Assessment of naturally occurring radionuclides and heavy metals level and health risks in commonly consumed African catfish, white catfish and Nile Tilapia fish species from Epe Waterside region of Lagos, Nigeria. Journal of Applied Sciences and Environmental Management, 28 (2), 449-457
Paiva, I., Santos, R., Alves, J., & Ferreira, M. (2015). Evaluation of ingestion pathways in radiological exposure assessments. Radiation Protection Dosimetry, 167(1–3), 45–53.
Pervin, S., Kabir, M. M., Dewan, M. J., Khandaker, M. U., & Yeasmin, S. (2024b). Evaluation of radioactivity concentration in farm fresh milk and concomitant dose to consumer. Environmental Engineering Science, 10(9), e30454
Povinec, P. P., Hirose, K., & Aoyama, M. (2013). Fukushima accident: radioactivity impact on the environment. Newnes.
Puchkov, A., Druzhinina, A., Yakovlev, E., & Druzhinin, S. (2023). Assessing the natural and anthropogenic radionuclide activities in fish from Arctic rivers (Northwestern Russia). Pollution, 9(3), 1098-1116.
Ramazanian, H., Alrefae, T. (2022). Radioactivity of long-lived gamma emitters in egg. Kuwait J. Sci. 49(3), 1–9.
Rask, M., Saxén, R., Ruuhijärvi, J., Arvola, L., Järvinen, M., Koskelainen, U., Outola, I., & Vuorinen, P. J. (2012). Short- and long-term patterns of Cesium-137 in fish and other aquatic organisms of small forest lakes in southern Finland since the Chernobyl accident. Journal of Environmental Radioactivity, 103, 41–47.
Renaud, R., Parache, V., & Roussel-Debet, S. (2015). Internal doses of French adult population linked to the intake of radionuclides from the decay-chains of uranium and thorium by foodstuffs ingestion. Radioprotection.
Saito, R., Nemoto, Y., & Tsukada, H. (2020). Relationship between radiocaesium in muscle and physicochemical fractions of radiocaesium in the stomach of wild boar. Scientific Reports, 10, 1–8.
Salminen-Paatero, S., & Paatero, J. (2021). Transfer of Natural Radionuclides in Terrestrial Food Chains—A Review of Investigations in Finland. International Journal of Environmental Research and Public Health, 18(20), 10577.
Seyama, T., Arakawa, R., Machida, S., Yoshida, S., Maru, A., Baba, K. I., & Hayashi, T. (2020). Intake of Radionuclides in the Trees of Fukushima Forests 3. Removal of Radiocesium from Stem Wood, Cryptomeria Japonica (Lf) D. Don. Forests, 11(5), 589.
Shanthi, G., Kumaran, J. T. T., Raj, G. A. G., & Maniyan, C. G. (2010). Natural radionuclides in South Indian foods and their annual dose. Nuclear Instruments and Methods in Physics Research A, 619(1–3), 436–440.
Sharma, A. (2024). Progress in analytical methods for monitoring of heavy metals and metalloid in milk and global health risk assessment. Journal of Food Composition and Analysis. 135, 106568
Singhal, P. (2020). Food safety issues associated with milk: A review. Frontiers in Food Science and Technology. 399-427
Smith, J. T., Kudelsky, A. V., Ryabov, I. N., Daire, S. E., Boyer, L., Blust, R. J., Fernandez, J. A., Hadderingh, R. H., & Voitsekhovitch, O. V. (2002). Uptake and elimination of radiocaesium in fish and the “size effect”. Journal of Environmental Radioactivity, 62, 145–164.
Sorokin, P., G., Shchukin, M. V., Sodboev, T. T., Abelev, G. O. (2025). Distribution of Cs-137 in the soil–plant–animal (cattle) pathway in radioactively contaminated areas of the Bryansk Region. The Veterinarian, 2, 94–102.
Tanzi, C. P., & Knetsch, G. J. (2021). Monitoring of radioactivity in the Netherlands: National Radioactivity Monitoring Network – Results 2019 (RIVM Letter Report 2021-0079). National Institute for Public Health and the Environment (RIVM).
Touranlou, F. A., Moghimani, M., Marhamati, M., & Rezaie, M. (2024). Detection and measurement of radioactive substances in water and food: a narrative review. Italian journal of food safety, 13(1), 11651.
United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation, ANNEX B, Exposures from natural radiation sources. UNSCEAR 2000 REPORT, New York, 1, 97-99.
United States Environmental Protection Agency (USEPA). (2000). Evaluation of EPA’s guidelines for technologically enhanced naturally occurring radioactive materials (TENORM): Report to Congress. Washington, DC: U.S. Environmental Protection Agency.
Usikalu, M. R., Rabiu, A. B., Oyewumi, K. J., & Achuka, J. A. (2020). Variation of natural radioactivity in soil samples across geological formations. Radiation Protection Dosimetry, 190(1), 45–54.
U.S. Food and Drug Administration (FDA). (2020). Guidance levels for radionuclides in domestic and imported foods (Compliance Policy Guide Sec. 555.880). Silver Spring, MD.
Uzorka, A., Tukahirwa, I.,Ouyesiga, L., Olaniyan, A.O.. (2025). Analysis of radionuclide concentrations in fish and radioactivity levels in water from Lake Edward, Rukungiri District, Uganda. Discover Environment, 3(71)
Vasila, A., & Ahmed, M. (2011). Long-term fertilizer application and its effect on radionuclide accumulation in crops and animal tissues. Journal of Agricultural Chemistry and Environment, 5(2), 44–53.
Vitorović Gordana, Grdović Svetlana, Mitrović Branislava, Obradović Milan and Petrujkić Branko (2009). Radioecological investigation of food of animal origin in Belgrade environmentapanese Journal of Veterinary Research 57(3): 169-173Voigt, G., Howard, B. J., & Beresford, N. A. (2007). Transfer of radionuclides in animal production systems. Radiation Environment Biophysics, 10, 71–96.
Wei, B., Zhang, F., Wang, M., Li, S., Abbas, M. Q., Wan, Y., & Du, Z. (2025). Quantitative phospholipid omics of human milk, milk powder and ingredients: Further optimization for infant formula. Journal of Food Composition and Analysis, 140, 107186.
Zakariya, N. I., & Kahn, M. T. E. (2014). Review article: Benefits and biological effects of ionizing radiation. Scholars Academic Journal of Biosciences, 2, 583–591.
Zeng, Q., & Brown, P. H. (2000). Soil potassium mobility and uptake by corn under differential soil moisture regimes. Plant and Soil, 221, 121-134
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Aleksandra Angeleska, Ljupco Angelovski, Risto Uzunov, Radmila Chrcheva Nikolovska, Igor Esmerov, Dimitar Nakov, Elizabeta Dimitrieska-Stojkovikj

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The intellectual property and copyright on the original content of all scientific contributions in the published paper shall remain with the authors. Authors give permission to the JAPS owner to publish the paper. All authors agree to publish the paper under Attribution-NonCommercial-NoDerivatives 4.0 International license (CC BY-NC-ND 4.0).